code Contents

Code Reader JavaScript Programming Guide

code

Reviewed By Role Signature Date
Ryan Hoobler COGE

Mark Ashby Engineering

Vicki Thai Product Management

code Contents

Copyright © 2014 Code Corporation.
All Rights Reserved.

The software described in this manual may only be used in accordance with the terms of its license
agreement.

No part of this publication may be reproduced in any form or by any means without written permission
from Code Corporation. This includes electronic or mechanical means such as photocopying or recording
in information storage and retrieval systems.

NO WARRANTY. This technical documentation is provided AS-IS. Further, the documentation does not
represent a commitment on the part of Code

Corporation. Code Corporation does not warrant that it is accurate, complete or error free. Any use of
the technical documentation is at the risk of the user. Code Corporation reserves the right to make
changes in specifications and other information contained in this document without prior notice, and
the reader should in all cases consult Code Corporation to determine whether any such changes have
been made. Code Corporation shall not be liable for technical or editorial errors or omissions contained
herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use
of this material. Code Corporation does not assume any product liability arising out of or in connection
with the application or use of any product or application described herein.

NO LICENSE. No license is granted, either by implication, estoppel, or otherwise under any intellectual
property rights of Code Corporation. Any use of hardware, software and/or technology of Code
Corporation is governed by its own agreement.

The following are trademarks or registered trademarks of Code Corporation:

CodeXML®, Maker, QuickMaker, CodeXML® Maker, CodeXML® Maker Pro, CodeXML® Router,
CodeXML® Client SDK, CodeXML® Filter, HyperPage, CodeTrack, GoCard, GoWeb, ShortCode, GoCode®,
Code Router, QuickConnect Code, Rule Runner®, Cortex®, CortexRM, CortexMobile, Code, Code Reader,
CortexAG, CortexStudio, CortexTools, Affinity®, CortexDecoder, CortexJPOS, and CortexOPOS.

All other product names mentioned in this manual may be trademarks of their respective companies
and are hereby acknowledged.

The software and/or products of Code Corporation include inventions that are patented or that are the
subject of patents pending. U.S. Patents:

6997387, 6942152, 7014113, 7070091, 7097099, 7353999, 7519239, 7621453, 8001550, 8011584.

The Code Reader software uses the Mozilla SpiderMonkey JavaScript engine, which is distributed under
the terms of the Mozilla Public License

Version 1.1. The Code Reader software is based in part on the work of the Independent JPEG Group.

Code Corporation, 12393 South Gateway Park Place, Suite 600, Draper, UT 84020. www.codecorp.com

http://www.codecorp.com/

code Contents

Table of Contents
Changes from LASt REICASEcccueeuueeeeeeueiiirieniiiiisseissiisssensiissssnssissssssssssssssnsssssssssssssssnnsasns 8
B SR 11 1o [V ol Lo PO 9
1.1 [e Te [0 Tot A0 TX Yol 1] 4o T o 1 9
1.2 Document Organizationccoieeiiiieiiiiiiieiiiiiiiiiirnirse s reeersasssrasssrasssranssrenssssnss 10
1.3 Document and Coding CONVENTIONS.....c..ciiiiiuiiiiiniiiiiieniieiieniisiienisisesisisssissiessssssensses 10
1.4 Related DOCUMENTES......cciciiiieiiieiereeirteeeteeierenereanereasestnsessassersssessssersnsssensessnssssassesnssesanne 11
1.5 3= =T U= 11
2 Programming ENVIFONMENTceeueeuiiieeiiveiieeiiseiisnissnioinsosssoisssisssssssssnsssnsssnsssnssssssssons 12
2.1 JAVASCIIPt RESOUICES ..cueeniieiieiiieiiiniirniieniteeeteerneraeresseestesssasssasssnsssnssenssesssasernsernsesasssnssnns 12
2.2 [1] 1 o] S 12
23 Y 113 TUTE 1 o T PRt 12
2.4 CR3600 CodeViewer AppPlication.........ccccciiieeeiiiieceiciiieeeccerrenecsrreneneesrenesesssenssessnennsesssennnes 13
25 SECUNITY iieuiieeiiiniiieniiieiiiteiiineiereniitnerensisrsssresssrsnsssenssssnssssssssssnssssnssssnssssnssssnnsssenssssnnass 13
2.6 (DT TUT -1 V- P 14
3 Programming CONCEPLS..........ceeueeeueeenerenerenereesreesreasseessrnssrnssrmssssssseesssesesnsesnsssnsssssssenssens 15
3.1 Y113 1 o1 Y 2SSOt 15
3.2 The CR3600 Ui ODJECTcciieeeieiiiiiceriiieeerretaeeseenaneeseennsseseenssseseennsssssensssssesnssnssesnnsnnsenns 16
3.2. 1 Softkey IMPlemMENtatioNnc.eiiiiiiiieiee ettt sttt sttt s e et e sbeeeaneeea 17
3.2.2 Lo 0 K3 PP PP P PP PP PPPPPPPPPPPPPPPPRE 17
3.2.3 Y 1=T o T8 LSOO UPP T OPPPPPPPPPRt 19
S - | PSP PPPT PP 20
33 Y= o | U 21
331 DECOTE EVENTES «..veieiiiiee ettt ettt ettt ettt e ettt e sttt e e s s a bt e e s e abbe e e saabteeesabbeeseanbeeesssteeesabeeesannreeesnnees 21
3.3.2 NNV V=T o1 £ PP PP PPPPPPPPPPPPPIRE 22
20 75 T e T4 Yo' F=T o To I8 o0 (T ol U o o ISR 24
3.4 Reader ConfigUuration.......c.cceeeciiieiuieiieiiiirieieereeeneeseeenseeseeasssssenasssssenasssssennssassennnssssennnes 24
3.5 SYMDBOI DECOAING ...ceuiiieeiiiiiiiiiiiieiiitierreie e reeerensesensesensssrsnssseasessassssnsessnsssssnssssnsasansans 25
3.5.1 Transform Data by SYMbBOIOZYooo it e e e ere e s e e e reeeeans 27
3.5.2 EVAlUQLE Data FOrMAT ..ciiiiieiiiiiee ettt ettt et e e s st e e s st e e e sabae e s sabaeesssbeeesneeas 27
3,53 DELECE FOIMAt EITOIS ...ttt ettt e e e sttt et e e e e et ettt e e e s e anbbteeeaeseannbeneeeeesesnnres 28
3.54 Let the Code Reader Process the DECOUE.........couviiiiiiiiieieiieeeeitt ettt st 28
T T -4 VoY cI d YT 1= ol Yo [SRR 29
3.5.6 Determine the Orientation of the DECOUEcccueiiiiiriiiriiiiiieeee et 30

3.6 [Lo A 000 Y 010 4 18 T3 Y o= 4 oY s S 31

code Contents

3.7 Data in Code Reader LOCal StOrageccucerreeenciriennniereeeniereeasssrennsssrenassssrenssssssenssssssennnes 31
3.8 [1T 4 Vo B8 o e T=4 =T 1 4 S 32
N 0 [X 0] (=7 =T Lo N 33
4.1 BUI ceuiiinniiineiiieeiiieniiiensstensisrnesssnsssransssenssssnssssassssssssssnsssenssssnsssssssssensssensssenssssnssssnnsssensssanssns 33
411 Y= d g Yoo [PSPPSR 33
4.1.1.1] 1= o SRR RPUUPRRTRPRN 33
4.1.1.2 (o] ol 10y o W PRSP PTRPR 34
4.1.1.3 o1 o] 101) AUT O P PP PPPPPPPPPPPPPPPPPRY 35
4.1.1.4 o012 7o) TP PP PPPPPPPPPPPPPRY 36
4.1.1.5 SENAKY ettt st ettt et s bt e bt e shb e e nae e sabe e ne e e naneenneeas 37
41.1.6 7] T I S SRS PR SURUPRPTSPRN 37
4.1.1.7 SIOW et e e e e e —— e e e e e e e e ———eaeeeeeeaaaraaaaaeeeaaaaraaaeeeeeannnrraees 38
41.1.8 £ 2 1eXYd Slo] o o 1 VU TS UUPT RS 38
4.1.1.9 SNOWIMIBNUL .ttt ettt s e e s e esate e st e e s at e e ssbeesaaeesateesseeessteesaeessbeenbeeenaseenseees 39
4.1.1.10 SNOWSUDIMENU....oiiiiiiiiiiiiee sttt sttt s e st e st e s be e st e e sabeesabeesateesabeesabeesabeesnseesasaesnseenns 39
4.1.1.11 splash and clearSPIashcoeuii ittt e et e e e e rta e e e eanees 40
O 01 A Y o o T T U PP PP 41
4.1.2 e T o<1 =L ST PSP T PR PPSTP 41
41.21 INPULIMOTE. ...ttt ettt et s bt e bt e s b et e bt e sabe e e sbeesabeeesbeeebeeesnnesneeas 41
B.1.2.2 KEY oottt ettt ettt ettt 42
4.1.2.3 [y Ao = USRS 42
4.1.2.4 [T={ oY Yo Y= RS 43
4.1.2.5 SEAUS T XL ettt e e e e e e s e e e e e s r e et e e e st e reee e e sennnreeeeas 43
R T @ | oY [Tt £ SRS UUSSP 43
41.3.1 BUILBUTEON et st s e e s e s e s n e e e raeeeas 43
4.1.3.2 F={U T =X 1| SO PP PP PP PPPPPRTO 45
4133 LU T <o o o I PP RRPTPUPPE 46
4.13.4 BUI LI i aann 47
4135 =TT 1Y o 1= PSSPt 48
4.1.3.6 BUILIVIBINU Lottt aann 48
4.1.3.7 BUIL IV ENUIE B s 49
4.1.3.8 LU IR\ 01T I =Y =X [PSS 50
4.1.3.9 LU T IY=T oI =) (o] SO PRPTPUPPPNE 51
0 701 O (U Yo i = SRS 52
. 0 R - (U1 T =) P PPPRSOTPPPPPRN 53
0. T A = U1 TN o == =1 2 U o o P UUU R UPPRNS 54
4.1.4 Predefined SOTtKEY ODJECLScciciiiie ettt ettt e e e st e e e e bt e e e sbaeeeesateeeeensaaeessreaans 56
4.1.41 ool Yo] 1 =L USSR 56
4.1.4.2 LoF: | o Tol=] Yo] =) PSP 56
4.1.4.3 (o] Yo 11 =1 PSS 56
4.1.4.4 Y] =Tt Yo i o =1 PSRN 57
4.1.5 Form and Menu CommON Methodscoiueiriiiiiiiiiieieerte ettt ettt saee s 57
4.1.5.1 APPENA(CONTION) <ottt e e et e e e e ettt e e eeta e e e ebbeeeesabeeesensbseeeasssaaeansseaaanns 57
4.1.5.2 PreEPENA(CONTION)ueiiei ettt e e et e e e et e e e e abee e e eabaeeeeabeeeeetbaaeesntbeeeeenteeeennnens 57
4.1.5.3 SELACHIVECHIIA(CONTION) ..ttt e ettt e e e st e e e e eabe e e etbaeeeenbaeaeenns 58
4.1.6 Form and Menu CommON PrOPEIrtiesc..uuiiiiiiii it e e ettt e e eesitre e e e e e e e s ntaee e e e e e esanbaaseaeeeesnnees 58
4.1.6.1 (oF] o1 i o o PP PPPR T 58
4.1.6.2 (o] 01 .= 2P PP P PP PPPPPPPPPPPPRPRPPRE 59

code Contents

4.2 L= e [T P 59
4.2.1 V134 Vo Lo [P UPPPPRRROt 59
4211 o1 T=T o T TSROSO PP P PO PPPTRPROT 60
4.2.1.2 Lo 1=y =T L Y=Y u TV USSP 60
4.2.1.3 Lo N o Yo e K] = L (U LSRR 61
4.2.1.4 o] go Yol T3 0o '] ' =1 o T USSP 61
4.2.1.5 =T To Y=Y i 4oV RS 62
4.2.1.6 0T N Yol T PO O PP OPPP 62
4.2.1.7 SAVESETEINGS. . ee ettt e s e e s s e s e 63
4.2.1.9 SEEINTEIVAL . e e e e e e e e e e be e e e e e e e e aate e e e e e e eeeantaeeeeeeeennrraaeeas 63
o 0t L O B ol 1T 1 o 1Y =Y VY SRR 64
4.2.1.11 T3 T 4 T=To LU PP PP PPPPPPPPPPPPPPPPPRE 64
. St A ol 1T | o T 4= To 10 SRR 65
4.2.1.13 ShiftJISTOUNICOOEuvieiiiiiieeeiiiee ettt ettt e st e e et e e e eava e e e s bt e e e eataeeeabaeaeensreeeensaeesnnnees 65
4.2.1.14 WIEESETHING oottt s s s n e e e e e s e nr e e snnees 65
4.2.1.15 UNICOAETOSNITEIS ueiieeiieiiiiiiiiee ettt e e e ee st e e e e e e s e tbaeeeeeeeseeanasaeeeeeeeeesantaeseeeesennnnes 66
4.2.2 (e T o =T =L S PO T PRSP 67
42.2.1 ONCOMIMANGuitiiiiee ettt e e e e e s e e e e e eeeseataaeeeeeeeseastsbaeaeeeeseasssaaseeeesensssaeseeeesennnraneeas 67
4.2.2.2 LT @oTa Y= Ta e | 2T o1 o SR SPURN 68
4223 (o] 0] B =Telo o [P 69
42.2.4 (oY B =TeloTe [T AN =T o1 o} USSR 71
4.2.2.5 (o]] [o 1 LIPS UPT P 71
4.2.2.6 ONSEANADY ..ottt st e st e st e bt e sar e e he e sabe e re e e nareenaee s 72
4.2.2.7 DALEEIYLEVEN ..t st et be e bbbt e saee e be e e naeeenee s 73
4.2.2.8 <o PSSR URT P 73
4.2.2.9 =4 /==Y o N 73
By At (O B 0] o 1T SRS RR 73
4.2.2.11 The none property of the reader 0DJECooociiiiiiiie e e 74
o A o1 o] [T [PPSR UUPPRN 74
0 At e T ol o -1 {1 o V- SRS 74
A N o 1o (VY =T N LT o o SRR 74
0 2t 5 T o Y=Y o [SRR 75
o T Y- To [T o T PSR UUPRRNS 75
By A A Yo V2= Y =XV A=Y £ Lo o SRS 75

0 By 0 < T o Yo VY [| SRS UR 75
4.3 3 o] - - TN 76
43.1 =Y d Yo Yo LRSS 76
43.1.1 =T o 011 Vo S PSP 76
4.3.1.2 LT T TP PP P PP P PP PPPPPPPPPPPPRPRPPRY 77
43.1.3 L e | =T ST 77
43.1.4 LT aTe |\ T=D TSR PP UU 77
43.1.5 (<= o [P RURT 78
43.1.6 LT -0 o 1= T PPPPPPPRt 78
4.3.1.7 L 2= TSP PPPPPPPPPPRY 79
43.1.8 (37 o] o Y=o S 79
4.3.1.9 11 = PRSPPI 80
e T 0t O - =T Yo 1T R 81
ot A - 1Y@ 1 & =1 AV T o [11 P UU U UPURN 81
43.2 e oT o =T o (= E TP PPPPPPPRE 82

43.2.1 0N LT TeT I oY ol=] o | PRSPPIt 82

code Contents

4322 [S V1| RTRPRPRRRY 82

43.2.3 [OBFUIINESS_PEICENT .ottt ettt sttt b et e sbe e sbe e e sbaeesne e e saneenneees 82

4.4 (o0 11 1 o TSN 82

441 V1] o e [P OPPR PP RRTRRRRRt 82

4.4.1.1 (o] o1 1T ot USRS 83

44.1.2 (o [EY o] 0] 4 1= o1 P USSR TRRRRROPP 83

4413 <] Lo L= 1ol =] PO RUTRRUOPP 83

4414 Y= g Lo L= PRt 84

442 (o 0] o 1<] =T TSP U PP PPPPPPPPPPRE 85

4421 [@0 oY a=To1 =1« FERTT PPNt 85

4.5 [TV T Vot 4 o] 3 L3RS 85

Y0 A TT- | o Y- PSS 85

451.1 F][] OO RRRRRP 86

45.1.2 (olo] 01 {1 1 o USSR 86

45.1.3 o] o] 111) AUUTO PP PPPPPPPPPPPPRE 87

4.5.2 ool @o] o L o] ISR 89

4,53 Other FUNCEIONS .oooieiieeiiieeee 89

4531 0] 2 - | 89

B.5.3.2 BC ettt ettt ettt ettt ettt ettt e ettt e et e et e e et et et e s et et et e e et et etee e eeeeenens 89

4533 [[a Lol [Tc TSROSO 90

4534 [0 4T o) PP PPPPPPPPPPPPPRY 90

4535 SEESTANADYIMESSAZE ...veeeiiiiie ettt et e e et e e e rte e e e st e e e e bt e e e seaaaeeesbbeeeeastaeesenseaeesasseeaeansaeeaanes 91

4.5.3.6 (Ve L A =1 PO PP O PP POR PP PPPPPRTON 91

GlOSSATY ANA ACIONYIMSc..ceeeeeeeneeeeeereenierreserenesesensseesasesssssessnsssssasssssssesenssessnsssssasessnssnsen 92

Appendix A Code Reader 3600 SimMUIGLON.............cceeeuereeeeereneeeeeneeeensereeseernssesressssrasessnsssees 93

A.l 11 1| =]] o TSP 93

A.2 L0 LT = 0 1 93

A2 1 EILOr WINUOW .ceeiiiiiiiieeece ettt ettt e e e e e e are e e e e e ees ettt aaeeeeeeesenstasaeeeeeesasssssseeeeeesensnsseseeeesesnnnses 93

A.2.2 SIMUIATOTr WINAOW . 95

AppPendiX B INPUL IMOES...........cceueeeeeieeeniiieiinieniireiisinesessnsiessasissesssssnssssnssossesssssassssnsssnes 96

ApPendix C FOrMQL SPECIJIEISueeeeuueeeuneeeeuereensereererensseseasieseasessnssesensssesssessnsssssnssssnssenes 97

Appendix D Supported JAVASCHIPt COTE...........eeeueeeeerereeereeenneeeeaersnnserensessnssessnsssssnsessnsssees 98
Table of Tables

Table 1 — Keys t0 EVENt MaPPiNg...cue e iiiiieee ettt e et e e e e e e e e e e ataee e e e e e e e e ennnrraneeeaaens 23

Table 2 — Keypad INPUt MOTESccoiiiiiiiice s 96

FIGUIE 1 — CR3B00eeeeeeiiieeeeeiieee e ettt e e e ettt e e e ette e e e e eteeeeeeaaaeeeeeassaeeeeaasaeeeeanssesaeeansaseesannsaeeeeannneeans 9
Figure 2 — Hello World Application ...ttt e 16
Figure 3 — The Standard GUI DiSPIaycccevrreeeieeeeiiiiirreeeee e e eeeicirrreeeeeeeeseentreeeeeeeesesnssnsaeneeesens 16

code Contents

Figure 4 — FOrm DemO DiSPlayueeieicuiiiiiiiiiiee ettt ettt e e sree e s e e s s iaae e e e saaeee e s nanees 18
Figure 5 —Menu DemO DiSPlaycccucuriiiiiiiiiie ettt ree e s e s aae e e s s e e e s s nanes 20
Figure 6 — Sub Menu DemoO DiSPlayueieieiiieiiiiiieieriiee ettt e s e e e s aae e e s e 20
Figure 7 — CR3600 KEYPAU ..eeeiiiriieieiiiieee ettt esit ettt e s st e e s st e e e e s b e e e ssaaaaeessntaeeessnneeeesnanees 23
Figure 8 — gUi.alert EXAmMPIE c.ouuiieiiiieee ettt st e e s e e e e 34
Figure 9 — gui.Confirm EXamMPIE ...ccoiiuiiiii et e e s e e e s 35
Figure 10 — Ui PrompPt EXAmMPI@..ccc i ueiiii ettt e s e st e e e e e e s 36
P ={ U= A Rl = TU Y o o T B 7=Y 4 oo J PPN 44
Figure 12 —- INput Modes EXaMPIE..cccii ittt e e e e e e st e e e e e e s e s nneereeeeeeeas 46
O R = AU BT =T o T - | (o] gl I g =SSN 52
Figure 14 — gUi. TeXt EXAMIPIE ..uueiiiieiee ettt e e et e e e e e e e s st e e e e e e s e s nnrnanneeeeeas 54
Figure 15 —Toggle NOt SEIECIEA ...ovvieii e e e s e rae e e e e 55
Figure 16 —TOZEIE SEIECLEMuueiieeeeee e e e e e e e e e e e s e s e raeeeeeeas 56
FIgure 17 — Alert EXAmMPIE .o et e e e e e e e s et e e e e e e e s e s nnnaraneeeeeas 86
Figure 18 — Confirm EXamIPIE.....ueee ettt e e e e e e s e e e e e e eanes 87
Figure 19 — Prompt EXamMPle......eeiieeiee ettt rre e e e e e e e s et aee e e e e e e s e s nnreaaneeeeeas 88
Figure 20 — Editor DiSPlay «.cccccceeiiieeeee ettt et e e e e e e e e et e e e e e e e s e nnnaraneaaeeas 94

Figure 21 — CR3600 Simulator DiSPlayccccuuviiieieie ettt e et e e e e e s e nrareeeee e 95

code Contents

Changes from Last Release

Note: this table reflects only major changes since last release; there may be additional changes
that are not listed here.

Description Section(s) By
Added method saveOffsetWindow 4.3.1.16

Fixed typo in storage.rename 43.1.6 THJ
Updated to .docx format THJ

cade Programming Environment

1. Introduction

Code Corporation (Code) designs, develops and manufactures image-based readers and
software tools for data collection applications. With expertise in software development, optics,
imaging, and Bluetooth™ wireless technology, Code is an innovative leader in the Auto ID and
Data Collection Industry.

Figure 1 — CR3600

The CR3600 combines bar code reading with information display and keypad entry in
ergonomic handheld platforms. Code provides an easy-to-use JavaScript based application
development interface for the CR3600 as well as its other Code Readers. In order to run a
custom JavaScript application, a JavaScript license is required.

Table of Contents

1.1 Product Description

This manual describes the application programming interface for the Code Reader. It is
assumed the user will have programming knowledge and familiarity with the JavaScript
language.

e Code Readers reads code and can be programmed to transmit code data over a selected
communications link or to store data in reader memory (batch mode).

cnde Programming Environment

e The programming environment provides interfaces to:
— Read and manipulate data in reader memory.
— Display information on the CR3600 screen.
— Retrieve data from reader hardware or CR3600 key pad.
— Access data sent by host.
— Transmit data to a host computer via communications link.
— Select type of communications link.
— Set, change, and retrieve reader configuration settings.

Table of Contents

1.2 Document Organization

This document is organized as follows:

e Section 1, Introduction: gives a product description and describes how to use this
document.

e Section 2, Programming Environment: identifies tools used to create and load
application software into reader.

e Section 3, Programming Concepts: discusses how to accomplish various operations on
the reader using Code's application programming interface.

e Section 3.8, Class Reference: presents classes, objects, methods, properties, and
constructors that support application programs.

e Glossary
e Appendices

Table of Contents

1.3 Document and Coding Conventions

This document employs the following conventions to aid in readability:

e Words that are part of the application development description use the
Courier New font.

e Code examples usethe bold Courier New font.

e Variable names that must be supplied by the programmer are Courier New font
and are enclosed in relational signs, for example, <variable name>.

cnde Programming Environment

The Code Reader JavaScript library uses the following naming conventions:

e identifiers: mixed-case with a capital letter where words join (soCalledCamelCase);
acronyms and other initialisms are capitalized like words, e.g., nasaSpaceShuttle,
httpServer, codeXml

e variables and properties: initial lower case

e classes (i.e., constructors): initial capital

e functions: initial lower case

e unit of measure: suffix to name, separated from name by underscore, using correct
case when it’s significant, e.g., offset_pixels, width_mm, power_MW, powerRatio_dB

Table of Contents

1.4 Related Documents

CR3600 User Manual
Code Interface Configuration Document

Note: please visit Code’s website at http://www.codecorp.com to obtain these documents.

Table of Contents

1.5 Related Utility

CortexTools® (C007857) — is a software utility tool for configuring and installing firmware to
Code barcode readers. Note: Download firmware reader files separately.

CortexTools is available at: http://www.codecorp.com/downloads.html

Table of Contents

http://www.codecorp.com/

cnde Introduction

2 Programming Environment

Code provides an environment for programming, testing, and loading reader applications.
JavaScript was selected as the programming language and Code implemented a reader resident
JavaScript engine.

Code provides a computer resident simulator and bundled editor for the development of Code
Reader JavaScripts, which can be downloaded onto the reader.

Table of Contents

2.1 JavaScript Resources

This document is not a JavaScript manual. The following sources provide JavaScript reference
books and online documents.

e JavaScript: The Complete Reference, Second Edition
by Thomas Powell, et al.

e JavaScript Demystified (Demystified)
by James Keogh.

e JavaScript (TM) in 10 Simple Steps or Less
by Arman Danesh.

e http://javascript.internet.com/

e http://www.javascript.com/

Table of Contents

2.2 Editor

You can use your favorite editing product to create and modify JavaScript code. Turn off any
smart quote options in the editor. Smart quotes are not valid in JavaScripts.

Code has bundled a freeware editor (SciTE) with the Code Reader JavaScript Engine (JSE)
Simulator. See Appendix A.

Table of Contents

2.3 Simulator

Code provides a Windows PC based simulator for JSE. See Appendix A for more information.

http://www.amazon.com/exec/obidos/tg/detail/-/0072253576/qid=1122917483/sr=1-13/ref=sr_1_13/104-6194777-9419951?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/007226134X/qid=1122917552/sr=1-32/ref=sr_1_32/104-6194777-9419951?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/B0002F1C2I/qid=1122917676/sr=1-80/ref=sr_1_80/104-6194777-9419951?v=glance&s=books
http://javascript.internet.com/
http://www.javascript.com/

cnde Introduction

Table of Contents

2.4 CR3600 CodeViewer Application

The CodeViewer Application runs as a JavaScript application on the CR3600. The menu driven
application has features for changing configuration settings and for defining the applications
that run on the reader. JavaScript Developers can make use of the following keywords in the
CodeViewer Application:

Title — Displays the title of the JavaScript rather than the file name in CodeViewer’s ‘Application’
menu. Add a comment to your script formatted as STitle: <title of script>$ to implement.

Revision — Displays the revision of the JavaScript from the CodeViewer’s ‘Application/<script>’
submenu. Add a comment to your script formatted as SRevision: <revision of script>$ to
implement.

For details about the utility, see the CodeViewer Quick Start Manual at
http://www.codecorp.com.

Table of Contents

2.5 Security

Code supplies an encryption utility for license protection.

e Each Code Reader contains a unique reader ID.

e Select features of the reader are protected by license.

e Code provides a license file that activates protected features.

e Alicense file is required for each reader licensed to use protected features.

e Third party software licenses may also be protected using the encryption utility.

Table of Contents

cnde Introduction

2.6 Debugging

The Code Reader contains a built-in error log that can be used when debugging scripts. To
debug the script when an error has occurred, send the ‘(command to the reader; the reader
responds by sending the error log to the communications port. The error log may contain
messages from the firmware that should be ignored. JavaScript errors in the log can be
identified by the format: filename:lineNumber. If there are many error codes in the error log,
send the ‘)’ command to clear the log and repeat the steps to create the error, leaving only one
entry in the log.

Example:
Error log returns:

X-ap/gerror-log. storage init: flMountVolume fail status 26,
formatting.storage formatFilesystem: status O.

temp.js:3: TypeError: gui.aler is not a function. X-ap/dEOF.

This error log contains one firmware error and one JavaScript error. The JavaScript error
description begins with temp.js:3: and tells us that on line three of the temp.js file, gui.aler is
not recognized as a function. In this case, gui .alert has been misspelled (it is missing the t).

Table of Contents

cnde Programming Concepts

3 Programming Concepts

To help the developer create unique applications for the reader, Code provides an easy to use,
object oriented JavaScript Programming Guide. The developer can create complex business
applications with prompts and data entry through the CR3600’s user interface features (keypad
and display screen).

The features of the programming interface include:

e A graphical user interface
e Event handlers

e Symbol decoding

e Host communications

e Local data storage

e Code Reader configuration

In support of these features, the environment defines the following objects:

e gui

e reader
e storage
e comm

Using these features, you can create robust, interactive, and sophisticated user applications.

Code provides the CR3600 JavaScript Simulator (Appendix A) for testing scripts and a Download
Utility (section 1.5) for transferring scripts to the reader.

A script can be made the default application using the configuration utility, or it may be run
from the configuration utility without making it the default.

Note: the default application supplied by Code allows scripts to be run by host command or
configuration code scan; the command is “|run:scriptName.js” (using your own
scriptName).

Table of Contents

3.1 Simplicity

The “Hello World!” application is traditionally the first application presented in a programming
guide. It is an easy to code and understand application that illustrates how the programming
environment works.

cude Programming Concepts

In its simplest form, the “Hello World!” application in the CR3600 environment sends text to
the display. With the following single line of code, you can display “Hello World!” in the screen
defined by the standard CR3600 gui object (section 4.1).

gui.show(new gui.Text("Hello World!"));

Execution of this script displays the image shown in Figure 2.

Hello World!

Figure 2 — Hello World Application

Note that in Figure 2, the text is displayed in a text box control with a scroll bar to the right as
defined by the CR3600 gui object.

Table of Contents

3.2 The CR3600 gui Object

The CR3600 application development environment defines a standard GUI display for
application software (Figure 3). The display supports simple prompts and data entry.

Status Bar

Display Area

Lft Key RE Key

Figure 3 — The Standard GUI Display

The standard display consists of a status bar, a display area, and labels for the left and right
software programmable keys (softkeys) at the top of the CR3600 key pad (see Figure 7).

The scroll bar on the right side of the screen indicates the relative position within the displayed
object as the operator scrolls through forms, menus, or text using the up and down keys on the
keypad. This scrolling feature allows the application to display objects larger than the display
area.

Use the gui interface to develop forms and menus applications, and use the “show” methods to
display them.

cnde Programming Concepts

Table of Contents

3.2.1 Softkey Implementation

Softkeys are general purpose, programmable keys. The softkeys are independent of the GUI
display. The gui.showForm, gui.showMenu, and gui.showSubmenu methods include
softkey definitions appropriate for the implementation.

The following example shows the basic approach to programming the softkeys and
implementing their event handlers.

// define send-key functions used by common softkeys
function sendEnter () { gui.sendKey (gui.key.enter); }
function sendEscape() { gui.sendKey(gui.key.escape); }

// create some common softkeys

var selectSoftkey = new gui.Softkey("Select", sendEnter);
var okSoftkey = new gui.Softkey ("OK", sendEnter) ;
var backSoftkey = new gui.Softkey ("Back", sendEscape) ;
var cancelSoftkey = new gui.Softkey("Cancel", sendEscape) ;

See section 4.0 (gu1i library) for more information.

Table of Contents

3.2.2 Forms

Forms are the building blocks of your application. Each form represents a set of actions you
want to present to the user on screen.

Use the gui.Form object (section 4.1.3.3) to define the forms for your application. Section
4.1.3 defines the form object and several constructors that you can use to create controls on
your application form.

The following examples demonstrate how to create a form. The event handler functions need
to be defined for your application.

cude Programming Concepts

// JavaScript Form Demo Script Document
// form event handlers
function myFormOnOk () {/* processing code (example: save the

Employee #) */}

function myFormOnCancel () {/* processing code (example: return to
main menu) */}

// create the form object
var myForm = new gui.Form(myFormOnOk, myFormOnCancel) ;

// create the edit control

var edit = new gui.Edit("");

// create the label control

var label = new gui.Label ("Employee #:");

// position the controls on the form
myForm.append (label) ;
myForm.append (edit) ;

// Create the caption that will appear on the status bar
myForm.caption = "form demo";

// show the form
gui.showForm (myForm) ;

When the Form Demo Script runs, the CR3600 displays the following image:

form demo
Employee H:

Cancel

Figure 4 — Form Demo Display

The user enters an employee number into the edit control and presses the left button (OK) to
submit the data.

Table of Contents

cnde Programming Concepts

3.2.3 Menus

Use the gui.Menu object (section 4.1.3.6) to define the menus for your application. Use the
gui.MenulItem constructor to define the controls in the menu. Each control has an
associated onClick property that defines the function of the CR3600.

The following example demonstrates how to build and display menus and submenus.

// JavaScript Menu Demo Script Document
// menu event handlers

function onTimeCard () {alert(postAlertFunc, "TimeCard") ;}
function onInventory ()
{

gui.showSubMenu (subMenu, myMenu) ;

}

function onCapital () {alert(postAlertFunc, "capital");}
function onStock () {alert (postAlertFunc, "stock");}

// create menu objects
var myMenu = new gui.Menu() ;
var subMenu = new gui.Menu() ;

// create menu entries
var timeCardApp =
new gui.MenulItem("Time Card", onTimeCard) ;
var inventoryApp =
new gui.MenuItem("Inventory", onInventory);
var separator =
new gui.Separator(l, gui.separatorStyle.horizontalLine) ;
myMenu.caption = "menu demo";
subMenu.caption = "subMenu demo";

// create subMenu entries
var capital =

new gui.MenulItem("Capital", onCapital);
var stock =

new gui.MenuItem("Stock", onStock) ;

// position the controls on the menus
myMenu . append (separator) ;

myMenu . append (inventoryApp) ;

myMenu . append (timeCardApp) ;

subMenu. append (capital) ;

cude Programming Concepts

subMenu. append (stock) ;

//Specify a child to be selected when the menu is displayed
(optional)

myMenu. setActiveChild (inventoryApp) ;

subMenu. setActiveChild (capital) ;

// set the caption text for the status bar
myMenu.caption = "menu demo";

// show the menu

gui . showMenu (myMenu) ;

When the Menu Demo application is initiated, the CR3600 displays the following image:

menu demo
Inventory
Time Card

Figure 5 — Menu Demo Display

The Select button sends gui.softkey.enter to run the highlighted application. In this
example, the Inventory option is selected. The script then displays the Inventory submenu
shown in Figure 6.

subMenu demo
Capital

Figure 6 — Sub Menu Demo Display

Table of Contents

3.24 Text

Use the gui.Text object (section 4.1.3.11) to show text. Text may exceed the display area,
toggling the arrow buttons to view all data. This should not be used to control text within
menus or forms.

Table of Contents

cnde Programming Concepts

3.3 Event

The Code Reader JavaScript environment is event driven. The reader firmware waits for an
event such as a pressed key. The application gains control of an event by setting an object's
event properties to functions. Events include:

e send and receive of communications packets

e decode operations

e pressed keys

e command execution

e change of reader mode (idle, standby, and power down)

An application gains control only when:

e The reader application defines an event property.
e The application creates a function and assigns it to the event property.
e The event occurs.

The application can disable an event by setting the event property to null.

Table of Contents

3.3.1 Decode Events

The reader object defines an event onDecode. Section 4.2.2.3 discusses decode events.

cnde Programming Concepts

Example:

var numDecodes = 0;
var numDecodesProcessed = 0;

reader.onDecodeAttempt = function (count)

{
numDecodes = count;
numDecodesProcessed = 0;
}
reader.onDecode = function (decode)
{
if (++numDecodesProcessed < numDecodes)
{
// process individual decode, save in variables, etc.
}
else
{
// process the whole set, using saved variables, etc.
}
}

Table of Contents

3.3.2 Key Events

The clear, enter, and left and right buttons (softkeys) can be programmed to seamlessly
integrate with user specific events.

The possibilities are shown in Table 1. The GUI objects are documented in section 4.1.3.

code

Left Softkey

Enter Button 4

Table 1 - Keys to Event Mapping

Figure 7 — CR3600 Keypad

Programming Concepts

Right Softkey

Clear/Escape Button

Key Object Event Handler Property
Enter — button located in the gui.Form onOk
center of the arrow keys gui.Menu onOk
gui.Text onOk
gui.Button onClick
gui.Menultem onClick
Clear — bottom right button gui.Form onCancel
gui.Menu onCancel
gui.Text onCancel
Left Button — top left soft key guil onClick
Right Button — top right soft key gui onClick
Any Other Buttons gui.Form onKey
gui.Menu onKey
gui.Text onKey

Table of Contents

cnde Programming Concepts

3.3.3 Command Execution

The reader application defines a number of commands that can be sent to the firmware from
the host or by reading codes. The reader (section 4.2) defines an event by the onCommand
function. If onCommand is set, the reader finds the specified event before running the
command and transmitting the data.

Table of Contents

3.4 Reader Configuration

The Code Reader configuration settings define the active capabilities of the Code Reader. The
application development environment defines the reader object (section 4.2), which contains
methods for manipulating Code Reader settings. The Code Interface Configuration Document at
http://www.codecorp.com defines the configuration items and the values that can be set for
each item.

The application developer can dynamically change the active settings by using the
reader.writeSetting method. This method changes the operational value of the setting,
but that value is lost when the reader is turned off. The current values of all settings can be
saved by using the reader.saveSettings method, which writes the current values of the
settings to flash memory from where they are restored on power up.

Example:

reader.writeSetting (0x1b, 4);
gui.confirm(yesFunc, noFunc, "Setting changed.\n\nSave now? ",
"Setting Change")

//This function will be called if user presses Yes softkey
yesFunc = function() {
if ('reader.saveSettings())
alert (postAlertFunc, "Error Saving Settings");

Retrieve the current value of a setting by using the reader . readSetting method. Restore
factory default settings by using the reader.defaultSettings method.

Table of Contents

http://www.codecorp.com/

cnde Class Reference

3.5 Symbol Decoding

The primary function of the CR3600 is scanning, decoding, and processing one-dimensional and
two-dimensional barcodes. The reader can read a wide range of code types, or symbologies,
and provide access to the data after decoding. The reader decodes in one of two ways:

e Pressing the read key on the key pad.
e A decode command from the reader.processCommand method.

The reader.onDecode defines an event that allows the application to access data.

To program the CR3600 to scan and transmit data, follow the below commands.

function onDecode (decode)

{

// Processing

}

reader.onDecode = onDecode;

There are four basic options for decoding scanned data:

1. Process the data in the script, such as fill in form fields, and return null.

2. Let the data be further processed by the Code Reader firmware, typically for sending
and/or storing, by returning decode.

3. Transform the data and let the Code Reader firmware process the changed data by
setting decode.data as necessary and returning decode.

4. Invalidate the decode by returning false. The Code Reader will act as though the decode
never occurred.

The following pseudo code presents an example of decode processing addressing the four
options. The example transforms decode data based on certain symbologies. Then the example
checks the format of the decode data to determine the next processing steps.

Subsections following the pseudocode discuss the processing steps in the following example.
Example:

function onDecode (decode)

{

data = decode.data;

if (decode.symbology == some-special-symbology)
{

data = transformed decode.data;

}
else if (decode.symbology

== some-other-special-symbology)
{

cnde Class Reference

data = differently transformed decode.data;

}

if (data matches employee-badge format)

{
loginForm.employeeField. text = decode.data;
loginForm.pinField.text = "";
gui.showForm(loginForm) ;
return null;

}

else if (data matches part-number format)

{
stockForm.partField. text = decode.data;
gui.showForm(stockForm) ;
return null;

}
else if (data matches shelf-number format)

{
stockForm.shelfField. text = decode.data;
gui.showForm(stockForm) ;
return null;

}

else if (data matches wrong formats)

{
warning. text = "bad code for this application";
gui.showForm(warning) ;
return null;

}

else if (data matches format that is to be ignored)

{

return false; // invalidate the decode

}

else // code should be processed by Code Reader firmware
{

if (code should be processed

with transformed data)
{
decode.data = data; // replace the data field
// with transformed data
}

return decode;

Table of Contents

cnde Class Reference

3.5.1 Transform Data by Symbology

Barcodes read by the Code Reader are encoded in unique symbologies. Particularly within two-
dimensional codes, common data items may be present in different locations within the decode
depending on the encoding symbology. In the example, line 5 checks the value of
decode.symbology and transforms the decode data to a common format. To check symbology,
compare decode.symbology against the symbology codes documented in the Code Interface
Configuration Document at http://www.codecorp.com.

Note: Sometimes symbology is used to distinguish otherwise like-formatted data; for example,
shelf tags may have the same number of digits as UPC codes for the products on the shelves,
but have different barcode symbologies that can be used to determine whether the decode is a
shelf tag or a product UPC code.

Table of Contents

3.5.2 Evaluate Data Format

After the data is converted into a common data format based on the symbology, the
application determines the data format and processes according to data content.

if (data matches employee-badge format)

{
loginForm.employeeField. text = decode.data;
loginForm.pinField.text = "";
gui.showForm(loginForm) ;
return null;

}

else if data matches part-number format

{
stockForm.partField. text = decode.data;
gui.showForm(stockForm) ;
return null;

}

else if (data matches shelf-number format)

{
stockForm.shelfField. text = decode.data;
gui.showForm(stockForm) ;
return null;

}

The previous statements from the example demonstrate the processing of data within the
decode handler. Based on the data format, the application program extracts data from the
decode and displays appropriate forms.

http://www.codecorp.com/

cnde Class Reference

These examples execute a return null statement to consume the decode for the specified data
formats.

Table of Contents

3.5.3 Detect Format Errors

If the format matches a known format that should not be used in the current application
context, the application can send a warning message, which is displayed in "warning" form.

else if data matches wrong formats

{
warning. text = "bad code for this application";
gui.showForm(warning) ;
return null;

}

In this case, the example returns a null to consume the decode.

Note: Do not code alert, confirm, or prompt, either as functions or as gui methods, in an
onDecode or onCommand event handler. The events originate in the Code Reader firmware,
resulting from decodes, commands, or communication events. While the event handler is
running, the main application is held idle until the event handler returns. If the event handler is
waiting for the user to finish with alert, confirm, or prompt, the main application will be
forced to wait as well, resulting in timeout errors.

Table of Contents

354 Let the Code Reader Process the Decode

If you want the Code Reader to process the decode, set the decode as the return statement
parameter. If you have changed decode data and want the changes available to the Code
Reader, set the appropriate data field in the decode to the changed value before returning the
decode.

else // code should be processed by Code Reader firmware
{

if (code should be processed

with transformed data)
{
decode.data = data; // replace the data field
// with transformed data
}

return decode;

cnde Class Reference

Table of Contents

3.5.5 Ignore the Decode

You can ignore a particular format by exiting the function with a return value of false as
shown in the following code segment from the example.

else if (data matches format that is to be ignored)

{

return false; // invalidate the decode

}

Note: Normally, the Code Reader will sound a good-decode beep at the end of decode
processing. If you do not want invalidated decodes to cause the usual good-decode beep in the
Code Reader firmware, you must configure the reader to process the decodes via JavaScript
before beeping. Then the Code Reader will only beep if there is at least one decode that is not
invalidated. For more information, refer to the Code Interface Configuration Document at
http://www.codecorp.com.

If your reader.onDecode function returns false, you should configure the Code Reader
to beep upon decode error.

Table of Contents

cnde Class Reference

3.5.6 Determine the Orientation of the Decode

You can determine the orientation of a code by using the bounds array. The bounds array has
four elements that can be used to give the coordinates of the four corners of the code (the
origin is the center of the decode field):

e (decode.bounds[0].x, decode.bounds[0].y) = coordinates of top right corner

e (decode.bounds[1].x, decode.bounds[1].y) = coordinates of top left corner

e (decode.bounds[2].x, decode.bounds[2].y) = coordinates of bottom left corner
e (decode.bounds[3].x, decode.bounds[3].y) = coordinates of bottom right corner

These designations (e.g. top left) refer to the corners of the symbol, not as it appearsin a
particular image, but rather as it appears (most often) in its symbology specification. For
example, for Data Matrix, array element 2, which contains the coordinates of the bottom left
vertex of the symbol boundary, will always be proximate to the intersection of the two lines
which form the “L” of the symbol, regardless of the actual orientation (or mirroring) of the
symbol in the image submitted to the decoder.

In normal orientation, we would expect the signs of the coordinates to be:
e decode.bounds[0].x (-), decode.bounds[0].y (+)
e decode.bounds[1].x (-), decode.bounds[1].y (-)
e decode.bounds[2].x (+), decode.bounds[2].y (-)
e decode.bounds[3].x (+), decode.bounds[3].y (+)

A code that is not “right side up” could be rejected by exiting the function with a return value of
false as shown in the following example.

if (decode.bounds[0].x > 0 && decode.bounds[0].y < 0 &&
decode.bounds[1] .x > 0 && decode.bounds[1l].y > 0 &&
decode.bounds[2] .x < 0 && decode.bounds[2].y > 0 &&
decode.bounds[3] .x < 0 && decode.bounds[3].y < 0)

{

return false; // invalidate the decode

}

Note: Normally, the Code Reader will sound a good-decode beep at the end of decode
processing. If you do not want invalidated decodes to cause the usual good-decode beep in the
Code Reader firmware; you must configure the reader to process the decodes via JavaScript
before beeping. Then the Code Reader will only beep if there is at least one decode that is not
invalidated. For more information, refer to the Code Interface Configuration Document at
http://www.codecorp.com.

Table of Contents

cnde Class Reference

3.6 Host Communication

The Code Reader application development environment defines a host communication comm
object (section 4.3.2.3) to support communications with a host resident application. For
example, the Download Utility (section 1.5) is a host resident utility that communicates with the
Code Reader for downloading files to the Code Reader.

From the host computer’s view, the Code Reader is a serial device accessible through a serial or
USB port, or through Bluetooth Radio Frequency (RF) communications. Code Reader
configuration settings define the active host communications port.

The Code Reader host communications implementation supports two basic styles of
communication: raw text and packets. It also supports a set of native protocols.

The application program transfers data to the host by writing to the Code Reader host
communications port using methods defined by the Code Reader comm object (section 4.3.2.3).
Applications gain access to data sent by the host by implementing onCommand (and optionally
onCommandFinish) event handlers defined by the Code Reader's reader object properties
(section 4.2) and parsing the “|” command.

Example:

reader.onCommand = function (type, data)

{
// intercept | command with app-data: prefix
if(type == '|' && data.match(/“app-data\:/))
{

return false; // Suppress the command

}
return true;

}

For more information on host communications, refer to the Code Interface Configuration
Document at http://www.codecorp.com.

Table of Contents

3.7 Datain Code Reader Local Storage

The application development environment provides program access to Code Reader local
storage through the storage object (section 4.2.2.18). Data is maintained in storage as
named objects called files. The Download utility can transfer host data into a Code Reader file.
The Code Reader application can also store data in files.

The name of a Code Reader file may be 1 - 200 printable ASCII characters.

cnde Class Reference

Use the erase and write methods of the storage object to manage files. Use the
findFirst and findNext methods to locate files. Use the read method to access a file or
the upload method to send it to the host.

Table of Contents

3.8 Demo Programs

Many of the concepts discussed in this section can be found in the source code of the demo
programs included in the ZIP file that contained this document.

cnde Class Reference

4 Class Reference

The built-in objects described in this section enable a JavaScript program to receive data from
the Code Reader and control its behavior.

Table of Contents

4.1 gui

The gui object provides application programming access to the CR3600 display screen. The
CR3600 application development environment defines a standard software GUI format (section
4.1.3) consisting of a status bar, a display area, and labels for the left and right software
programmable keys (softkeys) on the CR3600 key pad.

The properties, methods, and classes of the gui object support the development of graphical
user interfaces in custom software applications.

Table of Contents

4.1.1 Methods

The following section documents the methods defined for the CR3600 gui object.

Table of Contents

4.1.1.1 alert
The gui.alert function displays text in the display area of the standard GUI display. Do not
call this function within onDecode and onCommand event handlers.
Format:
gui.alert(func, text, title);
Where:

func —function name; function to be called after displaying the alert. This function does
not take any arguments and returns void.

text — string; text to display as the alert.
title —string; text to display in the gui object status bar; defaults to “Alert.”

Processing suspends until the operator presses an enter key — either the enter key or the left
softkey defined as OK. Once the operator presses the enter key, it calls the provided function to
continue processing.

cade Class Reference

Example:

gui.alert (samplefunction, "Status Alert", 'gui.alert example");

Displays the alert shown in Figure 8 and waits until the operator presses the enter key or the
left softkey (OK). Once the operator presses a key, it calls samplefunction() to continue.

Status Alert

Figure 8 — gui.alert Example

Table of Contents

4.1.1.2 confirm

The gui.confirmfunction displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:

gui.confirm(yesFunc, noFunc, text, title,
leftSoftkeylLabel, rightSoftkeyLabel) ;

Where:

yesFunc — function name; function to be called when the confirm receives left softkey.
This function does not take any arguments and returns void.

noFunc — function name; function to be called when the confirm receives right softkey.
This function does not take any arguments and returns void.

text —string; text to display for confirmation.

title - string; text to display in the gui object status bar; defaults to “Confirm.”
leftSoftkeyLabel — string; text to use as label for the left softkey (default is "Yes").
rightSoftkeyLabel — string; text to use as label for the right softkey (default is "No").

Processing suspends until the operator presses an enter key or cancel key.

cade Class Reference

Example:

gui.confirm(onYesClick, onNoClick, "Exit?", '"guiConfirm") ;

Displays the confirm dialog shown in Figure 9 and waits until the operator presses the enter key
or the left softkey. If operator presses Yes key, it calls onYesClick function. If operator presses
No key, it calls onNoClick function to continue processing.

Figure 9 — gui.Confirm Example

Table of Contents

4.1.1.3 prompt

The gui .prompt function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:
gui.prompt (func, text, initial, title);
Where:

func — function name. Function to be called when prompt receives an enter key. The
function takes one argument named result and returns void.

result —string; This is the argument to the function. It provides contents of the edit
control if the prompt receives an enter key (either the enter key or the left softkey defined
as OK); null if the prompt receives the right softkey defined as Cancel.

text —string; text to display as a label above a gui .Edit control.

initial —string; the initial string to display as the contents of edit control; default is an
empty string.

title - string; text to display in the gui object status bar; defaults to “Prompt”.

cade Class Reference

Processing suspends until the operator presses an enter key or Cancel key. The operator can
key new data into the edit control before pressing enter or the left softkey.

Example:
gui.prompt (postPromptFunc, "Enter login ID", "None", "guiPrompt") ;

Displays the prompt shown in Figure 10 — gui.Prompt Example.

Enter login ID

Cancel
Figure 10 — gui.Prompt Example
The postPromptFunc would be defined as follows
postPromptFunc = function(string) {
//Continue after prompt..
}

The value of string depends on the operator action.

e If the operator presses the right softkey (Cancel), the value of stringisnull.
e If the operator presses the “enter” key or the left softkey (OK) the value of stringis:
— <new content> if the operator changes the contents of the edit control
"None" if the operator does not change the content.

Table of Contents

4.1.1.4 putBox

The gui.putBox method allows graphical boxes to be painted to the display.
Format:

gui.putBox(x, y, xEnd, yEnd, backgroundColor, type):;

Where:
X —number

y — number

cnde Class Reference

XEnd —number
yEnd — number
backgroundColor — number
type — number

result —none

Table of Contents

4.1.1.5 sendKey
The gui.sendKey method sends a “pressed key” indication to the CR3600 firmware as
though it came from CR3600 keypad.
Format:
result = gui.sendKey (key) ;
Where:
key —number constant; the key to send. Use number constants defined in section 4.1.2.2.

result —Boolean; true if successful; false if not, which usually means the keypad is
locked but can also mean that the key buffer is full.

Example:

gui.sendKey (enter) ;

Sends the enter key event to the CR3600 firmware as though the operator had pressed the
enter key.

Table of Contents

4.1.1.6 sendText
The gui.sendText method sends a text string to the CR3600 gui object as though it had
been entered from the keypad.

Format:

result = gui.sendText (text) ;
Where:

text — string; the text to send.

cnde Class Reference

result —Boolean; false if all specified text could not be sent to the GUI (in which case,
none of it will have been sent); otherwise, true.

Example:

reader.onDecode =
function (decode) { gui.sendText (decode.data); }

Sends all decode data to the gui object as though it had been entered from the keypad.

Table of Contents

4.1.1.7 show

The gui. show method instructs the CR3600 to write the specified form, menu, or text object
to the CR3600 display as a standard gui object (section 4.1.3).

This low level approach is not recommended for use in most applications. Instead, Code
recommends using the gui.showForm, gui.showMenu, and gui . showSubMenu
methods.

Format:
gui.show(object) ;
Where:

object — object to show on the display. The object must be a gui.Form, gui.Menu, or
gui.Text object (section 4.1.3).

Note: This method does not return a value.

Table of Contents

4.1.1.8 showForm

The gui.showForm method instructs the CR3600 to display the specified form on the CR3600
display as a standard gui object (section 4.1.3).

Format:
gui.showForm(yourForm) ;
Where:

yourForm—form object to show on the display; the object must be a gui . Form object
(section 4.1.3.3).

Note: This method does not return a value.

To insert a caption into the status bar, set the yourForm. caption property.

cnde Class Reference

By default, the left software programmable key is set to gui.okSoftkey (section 4.1.4.3).
You may also define a custom leftSoftkey for your form object, e.g.,
yourForm.leftSoftkey = yourSoftkey, in which case gui.showForm will use
your softkey.

By default, the right software programmable key is set to gui . cancelSoftkey (section
4.1.4.2). You may also define a custom rightSoftkey for your form object.

Table of Contents

4.1.1.9 showMenu

The gui.showMenu method instructs the CR3600 to display the specified menu on the
CR3600 display as a standard gui object (section 4.1.3). This menu is the top level menu; sub-
menus can be created using the gui. showSubMenu method.

Format:
gui.showMenu (yourMenu) ;
Where:

yourMenu — menu object to show on the display. The object must be a gui . Menu object
(section 4.1.3.6).

Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu.caption property.

This method sets the left software programmable key to gui.selectSoftkey (section
4.1.4.4).

This method sets the right software programmable key to gui.backSoftkey (section
4.1.4.1) if the yourMenu.onCancel property is set; otherwise, null.

Table of Contents

4.1.1.10 showSubMenu

The gui. showSubMenu method instructs the CR3600 to display the specified menu on the
CR3600 display as a standard gui object (section 4.1.3).

Format:
gui.showSubMenu (yourMenu, parentMenu) ;
Where:

yourMenu — menu object to show on the display. The object must be a gui . Menu object
(section 4.1.3.6).

cnde Class Reference

parentMenu — parent menu to display in response to gui .backSoftkey.
Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu.caption property.

This method sets the left software programmable key to gui.selectSoftkey (section
4.1.4.4).

This method sets the right software programmable key to gui.backSoftkey (section
4.1.4.1) and sets the menu object’s onCancel property to a function that shows the parent
menu.

Table of Contents

4.1.1.11 splash and clearSplash

The gui.splash method displays an image on the CR3600 screen. The gui.splash
function should be used in conjunction with the setTimeout function. The setTimeout
function will suspend execution for a provided timeout value. Once the timeout specified in the
setTimeout function expires, it will call the function specified in the setTimeout to
continue execution.

Format:

gui.splash (imageName, stringText) ;
setTimeout (func, timeout ms);

Where:
imageName — string; the name of the image file to display (section 4.1.3.4).

stringText — string; the text string to be displayed below the image in the softkey area of the
display.

func — function; the name of the function to be called after timeout.

timeout ms —number; the number of milliseconds to wait before timeout of the splash
display.

Example:
gui.splash(“Corplogo.img”, ”“Version 1”);

setTimeout (postSplashfunc, 2000) ;

displays a corporate logo image and the text “Version 1” on the display. Then, it sets a
timeout of 2 seconds. Once, the timer expires, postSplashfunc is called to continue
execution.

cnde Class Reference

The first thing you need to do in the postSplashfuncistocall gui.clearSplash
method. This function will clear the image from the CR3600 screen. The
gui.clearSplash method should only be called after calling gui . splash method.

The CR3600 supports only its native format, which uses the extension .img. The image must be
128x128 pixels (for splash screen only). Images are not cropped; they will either display in their
entirety or will not display at all.

Code provides a utility to convert standard .pgm format files to the CR3600’s native .img format
(contact Code for more information http://www.codecorp.com).

Table of Contents

4.1.1.12 sync

The gui. sync method causes the display to be updated immediately.
Format:

gui.sync() ;
Where:

result —no return, GUI display is updated.

Table of Contents

4.1.2 Properties

The following section documents the properties defined for the CR3600 gui object.

Table of Contents

4.1.2.1 inputMode

The gui . inputMode object contains constants that define input modes for the CR3600.
The constant definitions are:

gui.inputMode.numeric

gui.inputMode.caps

gui.inputMode.lowerCase

gui.inputMode.symbols

http://www.codecorp.com/

cnde Class Reference

The character sets defined for these modes are described in Appendix B.

Table of Contents

4.1.2.2 key

The gui.key property is aread-only object containing number constants specifying keys for
use with the gui . sendKey method. The constants are named:

[] U-p

e down
o left
e right
e enter

e Dback (“CLEAR” on the keypad)
e cscape

e home

e end

e leftSoftkey

e rightSoftkey

Constants escape, home, and end have no keypad counterpart.

Constants leftSoftkeyand rightSoftkey represent the left and right software
programmable keys on the CR3600.

Table of Contents

4.1.2.3 leftSoftkey

The gui.leftSoftkey property identifies an event handler for the onC1ick property of a
gui.Softkey object and the key label, associated with the left programmable key on the
CR3600. The application program defines a gui . Softkey object. See the example in section
3.2.1

Setting gui.leftSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui. showMenu, gui . showSubMenu, and
gui.showForm methods, the gui.leftSoftkey property is set automatically.

Table of Contents

cnde Class Reference

4.1.2.4 rightSoftkey

The gui.rightSoftkey property identifies an event handler for the onC1ick property of
agui.Softkey object and the key label, associated with the right programmable key on the
CR3600. The application program defines a gui . Softkey object. See the example in section
3.2.1.

Setting gui.rightSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui . showMenu, gui . showSubMenu, and
gui.showForm methods, the gui.rightSoftkey property is set automatically.

Table of Contents

4.1.2.5 statusText

The gui.statusText property is a string that specifies text for display in the status bar at
the top of a CR3600 GUI screen. When gui.status is null, the CR3600 displays status icons
in the status bar. Note: The input mode icon will always be displayed in addition to the status
text when an edit control is active.

With menus and forms, use the caption property (section 4.1.6.1) to automatically set
gui.statusText when the menu or form is shown.

Table of Contents

4.1.3 Objects

The CR3600 application development environment provides the user classes described in this
section for use in building forms for the CR3600 gui object. The instances of these classes are
referred to as controls in this document.

Table of Contents

4.1.3.1 gui.Button

The gui.Button constructor creates a button control for a GUI form. The onC1lick event
handler is called when the enter key on the CR3600 keypad is pressed and the button control is
active. Program the function to return Boolean t rue if the control’s default processing of the
key should continue. Otherwise, program the function to return false; the control will act as
if not clicked.

cade Class Reference

Format:

var <button_name> =
new gui.Button(text, onClick);

Where:
<button name> - program-provided button control.

text —string; a label for the button. This property can be changed after the object is
created.

onClick —function for handling the button click event. The CR3600 calls this function
when the operator presses the OK enter key on the CR3600 keypad when the GUI button is
the active control.

Example:

// button control event handler
function rFOnClick () {reader.writeSetting(0Oxlb, 4);}
function rs2320nClick () {reader.writeSetting(0xlb, 1) ;}

// create the form object
var myForm = new gui.Form() ;

// create the button
var rfButton = new gui.Button("RF Comm", RFOnClick) ;
var rs232Button = new gui.Button("RS232 Comm", RS2320nClick) ;

// position the controls on the form
myForm. append (rfButton) ;
myForm. append (rs232Button) ;

// Place text on the status bar
gui.statusText = "button demo";

// show the form
gui.showForm (myForm) ;

Displays the form shown in Figure 11.

button demo
RF Comm

Figure 11 — Button Demo

cnde Class Reference

When the operator presses the left softkey or the enter key when the control labeled “RF
Comm” is active, the script executes a reader.writeSettings method to set the
communications mode setting to RF (Bluetooth). When the “RS232 Comm” control is active and
the operator presses the key, the script executes a reader.writeSettings method to set
the communications mode setting to RS232.

Note: The active control is highlighted.

Table of Contents

4.1.3.2 gui.Edit

The gui .Edit constructor creates an edit control for a GUI form. The CR3600 operator can
enter data into the edit control.

Format:

var <edit name> =
new gui.Edit(text, defaultInputMode, validInputModes, onChar,
readOnly) ;

Where:
<edit name> — program-provided edit control.

text — string; the initial value for the edit control. The control contains text when it is first
displayed on the gui object. This property can be changed after the object is created.

defaultInputMode —number; the input mode that is selected when the user navigates

to the edit control and enters data. Modes are defined by gui . inputMode (section
4.1.2.1).

Note: The user can change to another input mode using the shift key.

validInputModes —number; a bitwise combination of input modes as defined by
gui.inputMode (section 4.1.2.1); defines the input modes that are valid in the edit
control.

onChar - function; the function to run when a character is entered into an edit control.

readOnly — Boolean; false allows the text to be changed by the user, true prevents the
text from being changed.

Example:

function quit() { reader.runScript(".default.js"); }

var form = new gui.Form(null, quit);
form.Caption = "Input Modes";

form.append (new gui.Edit("Num, any",

cade Class Reference

gui.inputMode.numeric)) ;
form.append (new gui.Edit("CAP, any",
gui.inputMode.caps)) ;
form.append (new gui.Edit ("Num, only",
gui.inputMode.numeric,
gui.inputMode.numeric)) ;
form.append (new gui.Edit("CAP, U/l Case",
gui.inputMode. caps,
gui.inputMode. caps
| gui.inputMode.lowerCase)) ;
gui.showForm (form) ;

Displays the form shown in Figure 12.

Input Modes [1]
Mum, any
ICAP, any
[Num, only

ICAP, U{l Case

Cancel

Figure 12 -- Input Modes Example

The text in each edit control identifies the default input mode of the control and the modes
which are enabled for the shift key.

Table of Contents

4.1.3.3 gui.Form

The gui . Form constructor creates a Form object for the CR3600 GUI. The gui .Form
constructor defines three event handlers for key events. Event handlers are null if not specified.

The following controls can be used in a form:

e gui.Button

e gui.ToggleButton
e gui.Edit

e gui.Image

e gui.Label

e gui.Separator

Form controls must be appended (section 4.1.5.1) or prepended (section 4.1.5.2) to the form
object.

cnde Class Reference

Format:

var <form name> = new gui.Form(onOk, onCancel, onKey)
Where:

<form name> — program-provided form control.

onOk — function for handling the enter key. The CR3600 calls this function when the
operator presses the enter key on the CR3600 keypad and the active control is not a button.

onCancel - function for handling the CLEAR key. The CR3600 calls this function when the
operator presses the key on the CR3600 keypad and the active control is not an edit
control. This function is also called when the escape key is issued as a softkey.

onKey — function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

To add a label to the form in the status area, set the form's caption property to a string
containing the label.

Example:
See section 3.2.2.

Table of Contents

4.1.3.4 gui.lmage

The gui. Image constructor creates an image object that can be displayed in the CR3600 GUI
form.

Format:
var <image name> = new gui.image (name) ;
Where:
<image name> - program-provided image control.
name — string; the name of an image file in file storage (section 4.1.3.4).

Example:

var myForm = new gui.Form() ;

var image = new gui.Image ("MyImage.img") ;
myForm. append (image) ;

gui.showForm (myForm) ;

The image can be up to 128x94 pixels depending on the form. Images are not cropped; they
either display in their entirety or do not display at all.

cnde Class Reference

The image file format is specific to the CR3600. Code provides a utility to convert standard .pgm
format files to the CR3600 native .img format.

Table of Contents

4.1.3.5 gui.Label
The gui.Label constructor creates a label control that can be displayed in the CR3600 GUI
menu or form.
Format:
var <label name> = new gui.Label (text);
Where:
<label name> - program-provided label control.

text — string; the text to be displayed as a label. This property can be changed after the
object is created.

Example:
See the form example in section 3.2.2.

Table of Contents

4.1.3.6 gui.Menu

The gui .Menu constructor creates a menu object for the CR3600 GUI. The gui.Menu
constructor defines three event handlers for key events. Event handlers are null if not specified.

The following controls can be used in a menu:

e gui.Menultem
e gui.Separator
e gui.ToggleButton

Menu controls must be appended (section 4.1.5.1) or prepended (section 4.1.5.2) to the menu
object.

Format:

var <menu name> = new gui.Menu(onOk, onCancel, onKey) ;
Where:

<menu_name> — program-provided menu.

cnde Class Reference

onOk — function for handling the enter key. The CR3600 calls this function when the
operator presses the enter key on the CR3600 keypad when the active control is not a
button.

onCancel - function for handling the CLEAR key. The CR3600 calls this function when the
operator presses the CLEAR key on the CR3600 keypad and the active control is not an
edit control. This function also is called when the escape virtual key is issued (typically by
a softkey).

onKey — function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

Example:
See the menus example in section 3.2.3.

Table of Contents

4.1.3.7 gui.Menultem

The gui.Menultem constructor creates a MenulItem control for display in a CR3600 GUI
menu. The onC11ick processing function is called when the enter key on the CR3600 keypad is
pressed and the MenuItem control is active.

Format:

var <menultemItem name> =
new gui.MenuItem(text, onClick);

Where:
<menuItem name> - program-provided MenuItem control.
text —string; a label for the MenuItemn.

onClick —function for handling the MenuItem. The CR3600 calls this function when the
operator presses the enter key on the CR3600 keypad when the MenuItem is the active
control. Code the function to return Boolean true if the control's default processing of the
key should continue. Otherwise, code the function to return false; the control will act as
if not clicked.

Example:
See section 3.2.3.

Table of Contents

cnde Class Reference

4.1.3.8 gui.MultiLineEdit

The gui.MultiLineEdit constructor creates a multiple line edit control for the GUI screen.
The CR3600 operator can enter data into the multiple line edit control. The
gui.MultiLineEdit constructor consumes the entire GUI screen, so it cannot be
appended/prepended to a menu or form. To access a multiple line edit control from a menu

Format:

var <multilLineEdit_ name> =
new gui.MultilLineEdit (text, defaultInputMode, validInputModes,
onChar) ;

Where:
<edit name> — program-provided multiple line edit control.

text —string; the initial value for the multiple line edit control. The control contains text
when it is first displayed on the gui screen. This property can be changed after the object
is created.

defaultInputMode —number; the input mode that is selected when the user navigates
to the edit control and enters data. Modes are defined by gui . inputMode (section
4.1.2.1).

Note: The user can change to another input mode using the shift key.

validInputModes —number; a bitwise combination of input modes as defined by
gui.inputMode (section 4.1.2.1); defines the input modes that are valid in the edit
control.

onChar — function; the function to run when a character is entered into a multiple line edit
control.

Other Functionality:

insert —function, arg: string; this function inserts a string where the cursor is when the
function is called.

Format:

<multilLineEditControlName>.insert (string);
Where

<multiLineEditControlName> — program- provided multiple line edit
control.

string — string; text to insert into multiLineEdit control.

Example:

var main = new gui.Menu

cnde Class Reference

main.append(new gui.Button("Notes", function() {
gui.showDialog (captureNotes); }));

gui.showMenu (main) ;
storage.write("saveNotes.txt","");
var captureNotes = new gui.MultilLineEdit("", gui.inputMode.caps)

captureNotes.leftSoftkey = new gui.Softkey ("Save", function()
{storage.append("saveNotes.txt", captureNotes.text);

captureNotes.text = ""; gui.showMenu (main); });
captureNotes.rightSoftkey = new gui.Softkey ("Cancel", function()
{ captureNotes.text = ""; gui.showMenu(main); });

Table of Contents

4.1.3.9 gui.Separator

The gui.Separator constructor creates a separator control for display in a CR3600 GUI
menu or form. Use the separator to insert white space or lines into a form to increase
separation between controls.

Format:

var <separator name> =
new gui.Separator (height, style);

Where:
<separator name> — program-provided separator control.
height — number; the height in pixels of the separator; minimum 1 pixel.

style —number; the style of the separator. style must be selected from one of the
following numeric constants:

e gui.separatorStyle.blank

e gui.separatorStyle.horizontalLine

e gui.separatorStyle.horizontalGroove
e gui.separatorStyle.horizontalRidge

The gui.separatorStyle.horizontalLine style adds a line in the approximate
center of the separator space as shown in Figure 13.

cade Class Reference

Line Separators
1 pixel

Next Control
10 pixels

Mext Control

LFt Key Rt Key

Figure 13 — gui.Separator Lines
Example:
See the menu example in section 3.2.3.

Table of Contents

4.1.3.10 gui.Softkey
The gui.Softkey object provides processing control of the programmable or “soft” keys on
the CR3600 just below the display screen.

Format:

var <softkey> = new gui.Softkey(text, onClick);
Where:
<softkey> - program-provided softkey object.
text — string; a label for the softkey; displays on the GUI.
onC1lick —function; the function to be executed when the softkey is pressed.

Setthegui.leftSoftkeyorgui.rightSoftkey propertyto <softkey> as
appropriate. The CR3600 JavaScript Library defines a set of useful softkey objects (section
4.1.4).

Example:
function leftSoftkeyOnClick ()
{
/* processing code */
}
function rightSoftkeyOnClick ()
{
/* processing code */
}

var left = new gui.Softkey("Ok", leftSoftkeyOnClick) ;
var right =
new gui.Softkey("Cancel", rightSoftkeyOnClick) ;

cnde Class Reference

gui.leftSoftkey = left;
gui.rightSoftkey = right;

Table of Contents

4.1.3.11 gui.Text

The gui.Text constructor creates a text object that can be displayed in the CR3600 GUI
display area. Text length can exceed the capacity of the display area. The Text control includes
a scroll bar to indicate relative position within the text when the operator presses the up and
down arrow keys.

Format:

var <text name> =
new gui.Text(text, onOk, onCancel, onKey)

Where:
<text name> — program-provided text control.

text — string; text data to display on the CR3600 GUI. To display multi-line text, insert the
new-line character (“\n”) in the text string. This property can be changed after the object is
created.

onOk — function for handling the enter key. The CR3600 calls this function when the
operator presses the enter key on the CR3600 keypad.

onCancel - function for handling the CLEAR key. The CR3600 calls this function when the
operator presses the CLEAR key on the CR3600 keypad. This function also is called when
the escape key is issued (typically by a softkey).

onKey — function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

Note: The gui . Text constructor should be used only to display text, not as a control within a
gui.Formorgui.Menu.

cade Class Reference

Example:

gui.statusText = "text example";

gui.show(new gui.Text
("Four score and seven years ago, our fathers brought
forth upon this continent, etc ..."));

displays the screen shown in Figure 14.

text example
Four score and
SBVEen years
ago, our

fathers
brought forth

Figure 14 — gui.Text Example

Note: The scroll bar indicates that there is more text to display than is currently on the
screen.

Table of Contents

4.1.3.12 gui.ToggleButton

The gui.ToggleButton constructor defines a button control for a GUI form. When a toggle
button is clicked, an indicator in the button is alternately displayed or suppressed.

Format:

var <togglebutton name> =
new gui.ToggleButton(text, initiallyChecked, onToggle) ;

Where:
<togglebutton name> - program-provided toggle button control.
text —string; a label for the toggle button.

initiallyChecked —Boolean; true, the button displays the checked indicator when
first shown; false, the button does not display the checked indicator when first shown.

onToggle — function for handling the button click event. It passes a single Boolean
parameter; true, the button is checked; false, the button is not checked. The CR3600
calls this function when the operator presses the OK enter key on the CR3600 keypad when
the GUI button is the active control.

Other Functionality:

cade Class Reference

checked — Boolean; current state of toggle button.
toggle —function; toggles the toggle button as if activated by the GUI screen.

Example:

// form event handlers

// button control event handler

function toggleOnClick (checked)
{reader.writeSetting(0xa7, checked);}

// create the form object
var myForm = new gui.Form() ;

// create the button
var toggle =
new gui.ToggleButton ("Vibrate", false, toggleOnClick) ;

// position the controls on the form
myForm. append (toggle) ;

// Place text on the status bar
myForm.caption = "toggle demo";

// show the form
gui.showForm (myForm) ;

Initially shows the form in Figure 15.

toggle demo
Vibrate

Cancel

Figure 15 — Toggle Not Selected

Pressing the left softkey (OK) toggles the indicator, as shown in Figure 16, and turns on the
vibrate feature of the CR3600. Pressing OK again turns off the indicator and the vibrate
feature.

cade Class Reference

toggle demo
*Wibrate

Cancel

Figure 16 — Toggle Selected

Table of Contents

4.1.4 Predefined Softkey Objects

The softkey objects described in this section are defined by the CR3600 JavaScript library.

Table of Contents

4.1.4.1 backSoftkey

The gui .backSoftkey object defines a softkey object. It labels the softkey “Back” and
sends the escape key when the softkey is clicked.

Example:

gui.rightSoftkey = gui.backSoftkey;

Table of Contents

4.1.4.2 cancelSoftkey

The gui.cancelSoftkey object defines a softkey object. It labels the softkey “Cancel” and
sends the escape key when the softkey is clicked.

Format:

gui.rightSoftkey = gui.cancelSoftkey;

Table of Contents

4.1.4.3 okSoftkey

The gui.okSoftkey object defines a softkey object. It labels the softkey “OK” and sends the
enter key when the softkey is clicked.

cnde Class Reference

Format:

gui.leftSoftkey = gui.okSoftkey;

Table of Contents

4.1.4.4 selectSoftkey

The gui.selectSoftkey object defines a softkey object. It labels the softkey “Select” and
sends the enter key when the softkey is clicked.

Example:

gui.leftSoftkey = gui.selectSoftkey;

Table of Contents

4.1.5 Form and Menu Common Methods

4.1.5.1 append(control)
The append function places the specified control as the last control in the specified menu
or form.

Format:

<MenuOrForm name>.append (control) ;
Where:

control —the control to append.
Note: A control cannot be used more than once in a form or menu.
Example:

See section 3.2.2.

Table of Contents

4.1.5.2 prepend(control)

The prepend function places the specified control as the first control in the specified menu
or form.

Format:

cnde Class Reference

<MenuOrForm name>.prepend (control) ;
Where:

control —the control to prepend to the menu.
Note: A control cannot be used more than once in a menu or form.
Example:

See forms example in section 3.2.2.

Table of Contents

4.1.5.3 setActiveChild(control)

The setActiveChild selects (but does not activate) the specified control when the menu or
form is displayed. This method is optional.
Format:
<MenuOrForm name>.setActiveChild(control) ;
Where:
control —the control to select when the menu is displayed.
Example:
See forms example in section 3.2.2.

Note: You must show the form/menu after setting the active child in order for this function to
work properly.

Table of Contents

4.1.6 Form and Menu Common Properties

The properties and methods described in the following section are common to the gui .Menu
and gui.Form objects.

Table of Contents

4.1.6.1 caption

The caption property is a string that is used by gui . showForm, gui . showMenu, and
gui.showSubMenu to display a caption in the status bar of the CR3600 gui object.

cnde Class Reference

Format:

<MenuOrForm name>.caption = "<caption_string>";

Example:

See forms example in section 3.2.2.

Table of Contents

4.1.6.2 onKey

The onKey property is a property of type function that is used by gui.Form, gui.Menu,
and gui.Text to provide control for any key not consumed by the active control. Key
constants are defined in section 4.1.2.2.

Format:

function processKey (key)

{

/* processing code */

}

<MenuOrForm name>.onKey = processKey;
Table of Contents

4.2 reader

The reader object models the Code Reader hardware and firmware. Use the methods and
properties of the reader object to command the behavior of the Code Reader such as:

e Executing commands on the Code Reader

e Running a JavaScript on the Code Reader

e Reading and changing Code Reader settings
e Obtaining data decoded from bar codes

Table of Contents

4.2.1 Methods

This section documents the methods defined for the Code Reader's reader object.

Table of Contents

cnde Class Reference

42.1.1 beep

The beep method causes the Code Reader to beep.
Format:

reader .beep (numBeeps) ;
Where:

numBeeps — number; number of beeps.
Note: This method does not return a value.
Example:

reader .beep(3) ;
Cause the reader to beep 3 times

Table of Contents

4.2.1.2 defaultSettings

The defaultSettings method resets selected Code Reader settings to manufacturing
defaults; it is equivalent to sending the 'J' command using the reader.processCommand
method (section 4.2.1.3).

Format:

reader.defaultSettings () ;

Note: This method has no arguments and no return value. Default settings may vary by unit
depending on the configuration purchased.

Table of Contents

cnde Class Reference

4.2.1.3 getKeyboardStatus

The getKeyboardStatus method takes no arguments and returns a read only Integer
bitmapped value containing the keyboard state of the Code Reader hardware. Possible
keyboard states include:

Bit | Key Value
0: Disabled
0 Numlock
1: Enabled
1 Caps/Shift Lock | 0: Disabled
1: Enabled
’ Scroll Lock 0: Disabled
1: Enabled
0: Disabled
3 | Compose
1: Enabled
0: Disabled
4 KANA
1: Enabled

Example:

keyboardStatus = reader.getKeyboardStatus() ;

A keyboardStatus value of 5 would indicate that the Scroll Lock key and the Numlock key
were both enabled.

4.2.1.4 processCommand

The processCommand method instructs the Code Reader to execute a command.

Format:

result = reader.processCommand (commandType, data) ;

Where:
commandType — string, 1 character; the command to be processed on the Code Reader.
data —string; data as required to process the command.

result —depending on the command, either:

cnde Class Reference

— aBoolean value
— adatastring

For commandType, data, and resulting values, refer to the Code Interface Configuration
Document, which can be downloaded from http://www.codecorp.com.

Example:

reader.processCommand('$', "\x03"); // read a code

Sends a “$” command code (post event) with a one-byte value of 3 (event type = read near and
far fields) to the Code Reader firmware.

Table of Contents

4.2.1.5 readSetting

The readSetting method returns the current value of the specified configuration setting.
Format:

value = reader.readSetting (settingNumber) ;
Where:

settingNumber —number; integer value representing the setting to be read.

For settingNumber values, refer to the Code Interface Configuration Document, which
can be downloaded from http://www.codecorp.com.

Example:
value = reader.readSetting(0x1b) ;
Returns the current value of the Code Reader setting hex 1b (communications mode).

Table of Contents

4.2.1.6 runScript

The runScript method instructs the Code Reader to schedule the load, compile, and
execution of the specified JavaScript. The Code Reader schedules execution of the script
immediately after the currently executing event handler or main script completes. The
runScript method does not include a mechanism to return to the calling script.

Format:

result = reader.runScript(scriptName) ;

Where:

cnde Class Reference

scriptName — string; the name of the JavaScript to be run. The script must first be loaded
into Code Reader flash by name. See the Download Utility (section 1.5).

result — Boolean; true if the script was loaded successfully; false otherwise. A return of
false usually means that the script could not be found.

Example:

In the forms example (section 3.2.2), the onTimeCard function could be defined as follows:

function onTimeCard ()
{reader.runScript ("TimeCardApp.]js") ;}

The operator, at the end of a work shift, could press the “TimeCard” button to access a time
card application.

Table of Contents

4.2.1.7 saveSettings

The saveSettings method writes the current values of the Code Reader configuration
settings into flash memory. Operational setting values are loaded from flash memory when the
Code Reader initializes. Any changed configuration settings will be lost at reader shutdown
unless saved in flash memory.

Format:

result = reader.saveSettings() ;
Where:

result —Boolean; false if the flash write fails; t rue otherwise.

Note: There are no arguments to this method.

Table of Contents

4.2.1.8 setinterval
The setInterval method calls a function or evaluates an expression at specified intervals in
seconds.

The setInterval method will continue calling the function until clearInterval is
called, or the window is closed.

The ID value returned by setInterval isused asthe parameter forthe clearInterval
method.

Format:

intervalld = reader.setInterval (function, interval_sec);

cnde Class Reference

Where:
intervalId - program provided interval ID.
function — program provided function to run at the specified interval.

interval sec —amount of time (in seconds) to delay before running the function again.

Table of Contents

4.2.1.9 clearinterval

The clearInterval method removes the instance of setInterval that has the handle
intervalId.

Format:

reader.clearInterval (intervalld) ;

Where:

intervalId-— program provided interval ID.

Table of Contents

4.2.1.10 setTimeout
The setTimeout method calls a function or evaluates an expression after a specified number
of seconds. The function cannot be an object method.

The setTimeout method will call the function passed to it after the set amount of time
unless clearInterval is called, or the window is closed.

The ID value returned by setInterval is used as the parameter for the clearInterval
method.

Format:

timeoutId = reader.setTimeout (function, timeout_sec);
Where:

timeoutId - program provided timeout ID.

function — program provided function to run after the specified timeout.

timeout sec—amount of time (in seconds) to delay before running the function.

cnde Class Reference

Table of Contents

4.2.1.11 clearTimeout

The clearTimeout method removes the instance of setTimeout that has the handle
timeoutId.

Format:

reader.clearTimeout (timeoutId) ;
Where:
timeoutId — program provided timeout ID.

Table of Contents

4.2.1.12 shiftlisToUnicode
The shiftJisToUnicode method converts a string from Shift-JIS encoding to Unicode
encoding.

Format:

unicodeString = reader.shiftJisToUnicode (text) ;
Where:
text — String; text encoded as JIS.

unicodeString - String; text encoded as Unicode.

Example:
myUnicodeString = reader.shiftJisToUnicode (myString) ;
Sets myUnicodeString to the Unicode encoded equivalent of myString.

Table of Contents

4.2.1.13 writeSetting

The writeSetting method changes the operational value of a single Code Reader
configuration setting.

Format:

writeSetting(settingNumber, wvalue) ;

cnde Class Reference

Where:
settingNumber — decimal integer; the setting to be changed.
value — decimal integer; the value to be written to the configuration setting.

For the possible values of settingNumber and value, refer to the Code Interface Configuration
Document, which can be downloaded from http://www.codecorp.com.

Note: This method does not return a value.
Note: Use Ox to denote hex values
Example:

reader.writeSetting (0Oxlb, 4);

Sets the reader communications mode to Bluetooth RF. See also the gui .Button example in
section 4.1.3.1.

Example:
reader.writeSetting (2, O0x7FFFFFFF) ;

Sets the reader Battery Trigger Confirmation Time to Ox7FFFFFFF milliseconds or ~596 hours
(effectively infinite time).

Table of Contents

4.2.1.14 unicodeToShiftlis
The unicodeToShiftJis method converts a string from Unicode encoding to Shift-JIS
encoding.

Format:

shiftJisString = reader.unicodeToShiftJis (text);
Where:

shiftJisString —String; text encoded as JIS.

text —String; text encoded as Unicode.

Example:

myShiftJisString = reader.unicodeToShiftJis (myString) ;
Sets myShiftJisString to the Shift-JIS encoded equivalent of myString.

Table of Contents

cnde Class Reference

4.2.2 Properties

This section documents the properties defined for the Code Reader's reader object.

Table of Contents

4.2.2.1 onCommand

The onCommand property of the Code Reader calls the specified function when the reader:

e Receives a configuration command from a communication port.
e Decodes a configuration command from a code read by the Code Reader.

The application uses this property as an event handler to:

e Receive notification of command processing.
e Prevent execution of a command.

The function will not be called in response to a reader.processCommand call or
commands within a stored-code (“performance strings”). Performance strings are documented
in the Code Interface Configuration Document, which can be downloaded from
http://www.codecorp.com.

Return Boolean true to instruct the reader to process the command. Return Boolean false
to suppress the command. When a command is suppressed, the firmware will not send any
response to the host, but the JavaScript application may provide its own response to the host.

Format:

function filterCommand (commandType, commandData)

{

var shouldSuppressCommand = false;
/* Processing statements */

return !shouldSuppressCommand;

}

reader.onCommand = filterCommand;

Where:
commandType — string; 1 character; specifies the command being processed.
commandData — string; data to be process by the command.

Example:

function notifyErase (commandType)

{

if (commandType == ')')

cnde Class Reference

print ("Erasing Error Log...");

}

reader.onCommand = notifyErase;

Sends a debugging message to the host to show that the erase command was detected.

Table of Contents

4.2.2.2 onCommandFinish

The onCommandFinish property of the reader object provides processing control upon
completion of a command.

Format:

function finishedCommand (commandSuccess,
responseType,
responseData)

{

/* Processing statements */

}

reader .onCommandFinish = finishedCommand;
Where:

commandSuccess — Boolean; contains the return status of the command: true = success,
false = failure.

responseType —string; 1 character; specifies the response type.
responseData — string; the response data.

Example:

function finishedCommand (commandSuccess,
responseType,
responseData)

if(!'commandSuccess)
alert (postAlertFunc, "Command failed ("
+ responseType + ":" + responseData + ")");

}

reader .onCommandFinish = finishedCommand;
sends an alert when a command fails.

Table of Contents

cnde Class Reference

4.2.2.3 onDecode

The onDecode property of the reader object provides processing control to the application
program at the completion of a decode action. The Code Reader firmware passes the decode
object to the function through the calling argument.

Code the function in your script and return a code as follows:

null —the decode has been consumed by the JavaScript application; there should be no
further processing of it by the Code Reader firmware.

false —invalidate the decode; if the Code Reader firmware is so-configured, it will act as if
there had not been a decode; the good-decode-beep will be suppressed.

decode — object (modified or unmodified) — the Code Reader firmware will continue to
process the modified or unmodified decode data.

Format:

function onDecode (decode)

{

var valid = true;
/* set to false below if decode is to be invalidated */

var passthrough = true;
/* set to false below if decode is consumed here */

/* processing statements, which may modify decode.data,
valid, and/or passthrough */

if('valid)
return false;

if('passthrough)
return null;

return decode;

}

reader.onDecode = onDecode;
Where:
decode — object having the following properties:
data —string; the text decoded from the bar code.
decoder —string; text representing the decoder currently installed

symbology —read-only number; the symbology number (refer to the Code Interface
Configuration Document, which can be downloaded from http://www.codecorp.com).

cnde Class Reference

symbology ex —read-only number;

symbologyModifier —read-only number; the symbology modifier number (refer to
the Code Interface Configuration Document, which can be downloaded from
http://www.codecorp.com).

sybologyModifier ex-—read-only number;

symbologyIdentifier —read-only string; this is the AIM identifier (“Jcm”).
x —read-only number; unit is pixels, 0 is center of image.

y — read-only number; unit is pixels, 0 is center of image.

x, y combined specify the position of the center of the bar code in the image (relative
to the center of the image; the values can be positive or negative).

time — read-only Date object; a JavaScript Date object indicating the time the code was
read.

quality percent —read-only number; a code quality metric returned by the
decoder. The precise meaning is symbology-specific.

grPosition —read-only number; Only defined if symbolgy is QR.
grTotal —read-only number; Only defined if symbolgy is QR.
grParity —read-only number; Only defined if symbolgy is QR.

linkage —read-only number; indicates that a code is one part of a composite code.
(refer to the Code Interface Configuration Document, which can be downloaded from
http://www.codecorp.com).

bounds — 4-element array, indexed from 0 — 3. Each element is a decode.bounds
object with 2 properties: x and y, both are integers and read only.

QR Structure Append

grTotal —read-only number; total number of symbols in the structured
append

grPosition —read-only number; the position of the current code in the
structured append

grParity —read-only number; returns the parity value for the current code in
the structured append

Example:
See the discussion of symbol decoding in section 3.5.

Table of Contents

cnde Class Reference

4.2.2.4 onDecodeAttempt

The onDecodeAttempt property of the reader object provides processing control to the
application program at the completion of a decode action, before any of the decoded symbols
are passed to reader.onDecode.

Format:

function onDecodeAttempt (count)

{

/* processing statements */

}

reader.onDecodeAttempt = onDecodeAttempt;
Where:

count —number; a count of the number of symbols that were read by a single decode
request.

Note: This method does not return a value.

Example:

var ok = false;

reader.onDecodeAttempt = function (count)

{

ok = count >= 2;
}
reader.onDecode = function (decode)
{

if('ok)

return false;

return decode;

}

Ensures there at least two decodes per attempt; otherwise, invalidates the single decode. Each
decode found in the field of view will be decoded only once per attempt, so this example
ensures there are two distinct symbols in the field of view. The reader must have been
configured (section 3.8) to support multiple reads per attempt.

Table of Contents

4.2.2.5 onldle

The onIdle property of the reader object provides processing control to the application
program whenever the reader is idle; i.e., no events (such as button presses) are active or

cnde Class Reference

gueued. This event is posted when the JavaScript has nothing else queued and is not related to
the Code Reader active time (setting hex 32).

Format:

function onIdle ()

{
/* processing statements */

}

reader.onlIdle = onldle;

Note: This method does not return a value.
Example:

function onIdle ()
{

reader.processCommand (‘.’, “\x22\x05\x32\x64") ;
}

reader.onIdle = onlIdle();

Flashes both LEDs on the CR2 green 5 times, with LEDs on for % second and off for 1 second.

Table of Contents

4.2.2.6 onStandby

The onStandby property of the reader object provides processing control to the application
program whenever the reader is about to enter the standby mode.

Format:

function onStandby ()

{
/* processing statements */
}
reader.onStandby = onStandby;
Where:

return — Boolean; true if the reader should be allowed to enter the standby mode;
false to preventit.

Example:

function onStandby ()

{
if (comm.isConnected) return false;
else return true;

cnde Class Reference

reader.onStandby = onStandby () ;

Prevents the reader from entering standby if it is connected and allows it to enter standby
otherwise.

Table of Contents

4.2.2.7 batteryLevel
The batteryLevel property of the reader object contains a read only integer specifying
the battery charge level. Possible battery charge levels are:

reader.green — not low.

reader.amber —somewhat low.

reader.red—very low.

Example:

batterylevel = reader.batterylevel;

Table of Contents

4.2.2.8 red

The red property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Table of Contents

4.2.2.9 green

The green property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Table of Contents

4.2.2.10 amber

The amber property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

cnde Class Reference

Table of Contents

4.2.2.11 none

The none property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Table of Contents

4.2.2.12 cabled

The cabled property of the reader object contains a read only Boolean value containing the
cabling state of the Code Reader hardware. The value will be true if cabled and false if not
cabled.

Example:
cabled = reader.cabled;

Table of Contents

4.2.2.13 charging

The charging property of the reader object contains a read only Boolean value containing
the charging state of the Code Reader hardware. The value will be t rue of charging and
false if not charging.

Example:

charging = reader.charging;

Table of Contents

4.2.2.14 hardwareVersion

The hardwareVersion property of the reader object contains a read only string
containing the version number of the Code Reader hardware.

Example:

hwVersion = reader.hardwareVersion;

Table of Contents

cnde Class Reference

4.2.2.15 oemlid

The oemId property of the reader object contains a read-only string containing the Code
Reader unique OEM identifier from the locked flash memory.

Example:

oemId = reader.oemld;

Table of Contents

4.2.2.16 readerid

The readerId property of the reader object contains a read-only string containing the Code
Reader unique ID from the locked flash memory.

Example:

rid = reader.readerld;

Table of Contents

4.2.2.17 softwareVersion

The softwareVersion property of the reader object contains a read only string
containing the version number of the firmware currently running in the Code Reader.

Example:

swVersion = reader.softwareVersion;

Table of Contents

4.2.2.18 bdAddr

The bdAddr property of the reader object contains a read only string containing the
Bluetooth address of the radio installed in the Code Reader.

Example:
bdAddrString = reader.bdAddr;

Table of Contents

cnde Class Reference

4.3 storage

The storage object provides application software access to Code Reader file storage. Files are
written to storage by the storage.write method and by downloading from the host (see
section 3.7).

Note: Names of files can be 1 - 200 printable ASCII characters. For compatibility with host file
systems, Code recommends you do not use characters that are reserved by host operating

systems: /,\,:,?, % [,1,",", etc. Files should be kept to a maximum length of 32K bytes. Files
are stored in UTF8 format, which encodes Unicode characters in one or more bytes each.

Table of Contents

4.3.1 Methods

The following section documents the methods defined for the Code Reader storage object.

In this section, the examples use elements of a time card application that assumes time card
records are maintained as files organized by employee number. The naming convention for the
time card records is TimeCard<employee number>.

Table of Contents

43.1.1 append

The storage. append method adds data to the end of a file.
Format:
result = storage.append(name, data) ;
Where:
name — string; the name of the object to append.
data - string; the data to add to the end of the file.
result —Boolean; true if the append succeeded; false if the append failed.
Example:
storage.append ("TimeCard” + employeeNumber, tcRecord) ;

Adds the time card record to the end of the time card record that already exists for the
employee specified by employeeNumber.

Table of Contents

cnde Class Reference

4.3.1.2 erase

The storage.erase method erases a file.
Format:

result = storage.erase (name) ;
Where:

name — string; the name of the object to erase.

result — Boolean; true if the file existed (the object is deleted); false if the file did not
exist.

Example:
storage.erase("TimeCard” + employeeNumber) ;
Erases the time card record for the employee specified by employeeNumber.

Table of Contents

4.3.1.3 findFirst

The storage. findFirst method locates the first file where the name matches a regular
expression specified in the call parameter.

Format:
name = storage.findFirst (expression) ;

Where:

expression —regular expression (not a string); a regular expression used by the Code
Reader to match against names of stored objects.

name — string; the name of the first matching file; name is null if no file matches the
expression.

Example:
name = storage.findFirst(/*“TimeCard.*/) ;
Sets name to the name of the first time card record file.

Table of Contents

4.3.1.4 findNext

The storage. findNext method locates the next file where the name matches the regular
expression specified in the expression parameter of a previous storage.findFirst

cnde Class Reference

call. The matching names are not ordered, but they will not be repeated; a findFirst -
findNext sequence will return all matching files, provided that there are no other intervening
storage method calls. (You can put the files into an array and use JavaScript’s sort method when
you need them ordered.)

Format:
name = storage.findNext() ;
Where:

name — string; the name of a file; name is null if no remaining file matches the previous
regular expression.

Example:
name = storage.findNext() ;
Sets name to the name of the next time card record file.

Table of Contents

4.3.1.5 read

The storage.read method reads a file.

Format and Example:

data = storage.read(name) ;
Where:
name — string; the name of a file.

data - string; the contents of the file; null if there was no file with that name.

Sets data to the contents of the time card record specified by name.

Table of Contents

4.3.1.6 rename

The storage.rename method renames a file.

Format and Example:

ok = storage.rename (0ldName, newName) ;
Where:

oldName — string; the name of a file to rename.

newName — string; the name of the file after rename.

cnde Class Reference

ok — bool; success or failure of the renaming.

Sets ok to true or false. The file c1dName is renamed to newName if return is true.

Table of Contents

4.3.1.7 size

The storage. size method returns the size of a file in bytes.

Format and Example:

nameSize = storage.size (name) ;
Where:
name — string; the name of a file.

nameSize — integer; the size of the file in bytes.

Sets nameS1ize to the size of the time card record specified by name.

Table of Contents

4.3.1.8 upload

The storage.upload method uploads a file to the host over the current active host comm
port.

Format:

result = storage.upload(name, withHeaderAndFooter) ;

Where:
name — string; the name of a file.

withHeaderAndFooter — Optional boolean; If set to false the file is uploaded
without the header (ap/g(file size) Jand footer (ap/d(checksum)). If the parameter is not
included the header and footer will be included with the upload.

result —Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, t rue indicates that the data
has been sent to and acknowledged by the host.

Note: The upload protocol is documented with the "A" command in the Code Interface
Configuration Document, which can be downloaded from http://www.codecorp.com).

cnde Class Reference

Example:

name = storage.findFirst(/TimeCard.*/);
while (name)

{

if ('storage.upload(name))
alert (name + " upload failed!'");
name = storage.findNext() ;

};

Uploads all time card records to the host. If a time card record fails to upload, the operator is
alerted.

Table of Contents

4.3.1.9 write
The storage.write method writes a file to storage. If the file does not exist, the Code
Reader creates it. If there was an existing file of the same name, it is replaced.
Format:
result = storage.write (name, data);
Where:
name — string; name of a file.
data - string; data to be written.
result — Boolean; true if the file was successfully written; otherwise, false.

Note: When replacing an existing file, if there is insufficient storage space to hold the new file, it
will not be written; however, the old file will be erased.

Example:

result = storage.write ("TimeCard" + employeeNumber, tcRecord);
Writes a time card record to a file.

Table of Contents

cnde Class Reference

4.3.1.10 getHeader
The storage.getHeader method returns the first multiline comment block from a
JavaScript file. This includes encrypted files if the proper developer key is installed.
Format and Example:

data = storage.getHeader (name) ;
Where:

name — string; the name of a file.

data — string; the first multiline comment block of the file.

Sets data to the first multiline comment in the file.

Table of Contents

4.3.1.11 saveOffsetWindow

The storage.saveOffsetWindow function will use the last decode to determine the
origin and bounding box within the last image and save the rotated box defined by the offset
point, width and height to filename. The function will return a boo1l indicating success or
failure. Failure will usually mean the file could not be saved.

Format:

result = storage.saveOffsetWindow (xOffset, yOffset, width,
height, filename)
Where:

xOffset -
yOffset-
width -

height -

filename — The body of the file name. The appropriate extension will be added by
the system based on the JPEG compression settings in the registry.

Table of Contents

cnde Class Reference

4.3.2 Properties

The following section documents the properties defined for the Code Reader storage object.

Table of Contents

4.3.2.1 fullness_percent

The storage.fullness percent propertyis a read-only integer containing the percent
of storage in use.

Table of Contents

4.3.2.2 isFull

The storage.isFull property is a read-only Boolean value; true if storage is full and
cannot be added to; otherwise, false.

Table of Contents

4.3.2.3 logFullness_percent

The storage.fullness percent property is a read-only integer containing the percent
of storage in use.

Table of Contents

4.4 comm

The comm object models the host commutation feature of the Code Reader. Use the methods
and properties of the comm object to send either packet or text data to the host.

Table of Contents

4.4.1 Methods

The following section documents the methods defined for the Code Reader comm object.

Table of Contents

cnde Class Reference

44.1.1 connect
The connect method instructs the Code Reader communication driver to attempt to establish
a connection.
Format:
result = comm.connect(try until timeout);
Where:

try until timeout —Boolean; if true, the reader will attempt to try connecting for
the number of seconds defined in connectionTime_sec (register 0xd9). If false, reader
will try to connect once

result —Boolean; false if there was a failure to connect; otherwise, true.

Table of Contents

4.4.1.2 disconnect
The disconnect method instructs the Code Reader communication driver to disconnect
from the host.

Format and Example:

comm.disconnect () ;

Causes the reader to disconnect from the host.

Table of Contents

4.4.1.3 sendPacket

The sendPacket method instructs the Code Reader to send a data packet to the host via the
communications port currently specified by the active Code Reader communication settings.
The Code Reader creates a packet formatted according to the active Code Reader packet
protocol configuration setting.

For a discussion of data packets, see the Code Interface Configuration Document, which can be
downloaded from http://www.codecorp.com.

Format:

result = comm.sendPacket (type, data);

Where:

cnde Class Reference

type — string, length 1; the type of packet to send. The packet types are documented in the
Code Interface Configuration Document, which can be downloaded from
http://www.codecorp.com.

data —string; data to be inserted into the packet.

result —Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the data
has been sent to and acknowledged by the host.

Example:

reader.onDecode =
function (decode) {comm.sendPacket('z', decode.data)};

Sends a packet containing results of a decode to the current comm port.

Table of Contents

4.4.1.4 sendText

The sendText method instructs the Code Reader to send arbitrary text (which may include
NULL characters) to be sent via the active communication port; the text will be sent “raw”
regardless of the reader comm mode settings. This method buffers the data until the USB
packet size limit is reached or a ‘z’ packet is sent. For an immediate response, send the data as
a ‘z’ packet using comm. sendPacket.

Format:
result = comm.sendText (data) ;
Where:
data - string; data to be sent via the active communication port.

result —Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, t rue indicates that the data
has been sent to and acknowledged by the host.

Example:

reader.onDecode =
function (decode) {comm.sendText ("decode.data"); }

Sends the raw text “decode.data” via the active communications port.

Table of Contents

cnde Class Reference

4.4.2 Properties

The following section documents the properties defined for the Code Reader comm object.

Table of Contents

4.4.2.1 isConnected
The isConnected property of the comm object contains a read-only boolean specifying the
host connection status. Possible connection values are:

true —reader is connected to the host.

false —readeris not connected to the host.

Example:

connected = comm.isConnected;

Table of Contents

4.5 Functions

The following section documents functions that enhance the application development
environment.

Table of Contents

45.1 Dialog

The Code Reader JavaScript Engine provides the following functions like those defined by
JavaScript in Web browsers:

e alert
e confirm
e prompt

These functions interact with the CR3600 standard GUI display. The CR3600 displays the name
of the function in the GUI status bar and the text associated with the function, and then waits
until a key is pressed. The following subsections describe the operation of each function in the
CR3600 environment.

Similar but more flexible functions are provided in the gui object (see section 4.1). For
example, if you want to change the caption on these displays use the gui object functions.

Table of Contents

cade Class Reference

45.1.1 alert

The alert function displays text in the display area of the standard GUI display. Do not call
this function within onDecode and onCommand event handlers.

Format:
alert (func, text);

Where:

func — function name; function to be called after displaying the alert. This function does
not take any arguments and returns void.

text —string; text to display as the alert.

Processing suspends until the operator presses an enter key — either the enter key or the left
softkey defined as OK.

Example:

alert (samplefunction, "Status Alert");

Displays the alert shown in Figure 817 and waits until the operator presses the enter key or the
left softkey (OK). Once the operator presses a key, it calls samplefunction () to continue.

Status Alert

Figure 17 — Alert Example

Table of Contents

4.5.1.2 confirm

The confirm function displays text in the display area of the standard GUI display and returns
a value based on the key pressed. Do not call this function within onDecode and onCommand
event handlers.

Format:

result = confirm(yesFunc, noFunc, text);

cade Class Reference

Where:

yesFunc — function name; function to be called when the confirm receives left softkey.
This function does not take any arguments and returns void.

noFunc — function name; function to be called when the confirm receives right softkey.
This function does not take any arguments and returns void.

text — string; text to display for confirmation.

result —Boolean; true if the confirm receives an enter key (either the enter key or the
left softkey defined as OK) ; false if the confirm receives the right softkey defined as
Cancel.

Processing suspends until the operator presses a suitable key.
Example:

result = confirm(onYesClick, onNoClick, "Exit?");

Displays the confirm dialog shown in Figure 918 and waits until the operator presses the enter
key or the left softkey. If operator presses Ok key, it calls onYesClick function. If operator
presses Cancel key, it calls onNoClick function to continue processing.

Confirm
Exit?

Cancel

Figure 18 — Confirm Example

If you want softkey labels other than OK and Cancel (for example, Yes and No), use the
gui.confirmmethod (section 4.1.1.2).

Table of Contents

4.5.1.3 prompt

The prompt function displays text in the display area of the standard GUI display and returns a
value based on the key pressed. Do not call this function within onDecode and onCommand
event handlers.

Format:

result = prompt (func, text, default);
Where:

cade Class Reference

func — function name. Function to be called when prompt receives an enter key. The
function takes one argument named result and returns void.

text —string; text to display as a label above a gui .Edit control.
default —string; a default string to display as the contents of edit control.

result — string; contents of the edit control if the prompt receives an enter key (either
the enter key or the left softkey defined as OK) ; null if the prompt receives the right softkey
defined as Cancel.

Processing suspends until the operator presses an enter key or Cancel key. The operator can
key new data into the edit control before pressing enter or the left softkey.

Example:

string = prompt (postPromptFunc, "Enter login ID", "None");

Displays the prompt shown in Figure 19.

Enter login ID

Cancel

Figure 19 — Prompt Example
The value of string depends on the operator action.

e If the operator at any time presses the right softkey (Cancel), the value of stringis null.

e |If the operator changes the contents of the edit control to <new content>and presses
the left softkey (OK), the value of stringis<new content>.

e If the operator presses the left softkey (OK) without changing the contents of the edit
control, the value of stringis “None” (the value entered as the second call parameter).

Table of Contents

cnde Class Reference

45.2 Process Control
45.3 Other Functions

4.5.3.1 format

The format function allows you to combine variables and text into a string. Its operation is
similar to the sprintf function of the Clanguage.

Format:
string = format(<control string>, <argument list>);

Where:

<control string> - contains a combination of characters that will be included in the
string and format specifiers that instruct format how to process the items in the argument
list.

<argument list>-acomma-separated list of items to be processed according to
format specifiers in the control string.

Example:
n = 45;
s = "ID" ;

string = format("%s = %d", s, n);
creates the string:
"ID = 45"
Format specifiers are taken from the standard C library and are discussed in Appendix C.

The output string is truncated to 1023 characters. If an error occurs, the output string is “format
error.”

Table of Contents

4.5.3.2 gc

The gc function cleans up memory that has been allocated but is no longer needed by the
runtime environment. This function is processor intensive, so its use can degrade performance.

Format:

gc()

cnde Class Reference

4.5.3.3 include

The include function executes the included script inline.
Format:
result = include (scriptName) ;
Where:
scriptName — string; the name of the script to be included.
result — Boolean; true if the script could be loaded and executed; otherwise, false.
Example:
include ("myScript.js");

adds the definitions in myScript. js to the application. The definitions become part of
the “including” script.

Table of Contents

4.5.3.4 print

The print function sends text to stdout (the active communication port), not to the CR3600
display. Limit the use of the print function to debugging. Use the comm object methods for
normal data output to communication ports.

Format:
print (text) ;
Where:

text — string; debugging data to be sent to the active communications port.

Table of Contents

cnde Class Reference

4.5.3.5 setStandbyMessage

The setStandbyMessage allows you to create a custom standby message to display when
the reader enters standby mode.
Format:
setStandbyMessage (text) ;
Where:

text — string; message to display when the reader enters standby mode.

Table of Contents

4.5.3.6 wdt_pet

Long processes may require the firmware watchdog to be pet during the operation. If this is
necessary the reader will reboot during a processor intensive section and an error will be
logged in the error log (see section 2.6)

Format:
wdt_pet (seconds)
Where:

value — number; number of seconds for which the watchdog should be petted. Valid
values are 1 to 300.

Table of Contents

cnde Glossary

Glossary and Acronyms

Term Definition

Control User Class object instantiated in a CR3600 GUI form.

CR3600 Code Corporation Code Reader 3600

RF Radio Frequency

Code Data Data resulting from the decode process after data capture or bar code
read

Smart Quote Previously formatted quotation marks, usually found in a word
processing program

Softkey User programmable key found on the CR3600

Consume Used with no return value by the user defined application or firmware

Table of Contents

code CR3600 Simulator

Appendix A Code Reader 3600 Simulator

Code provides a JavaScript simulator as part of the CR3600 Application Development
environment. A free source code editor, SciTE, is packaged with the simulator. More
information about SciTE can be found at http://www.scintilla.org/SciTE and the latest version of
the msi installation file can be found at http://opensource.ebswift.com/SciTEInstaller/.

From the editor you can execute the current file you are editing and walk through JavaScript
errors detected during execution.

Table of Contents

Al Installation

The simulator/editor package is distributed as an .msi file. Simply double click the appropriate
scite-X.X.X.msi or scite-X.X.Xx64.msi and SciTE will be installed in your Microsoft® Windows®
environment. Tie SciTE to the Code jsSim3600.exe file by following the steps in the SciTE
Installer README. txt file, foundinthe D018557 SOFTWARE SciTE Installer
Software. zip file, which is included in the JavaScript Development Kit.

Thefile C:\Program Files (x86)\SciTE\SciTEDoc.html (on 32 bitinstallations)
orC:\Program Files\SciTE\SciTEDoc.html (on 64 bit installations) contains the
editor user manual. The directory also contains additional SciTE html documents that discuss an
array of extensions, add-ons, and programming interfaces. These discussions are beyond the
scope of this document.

The jse directory contains the CR3600 JavaScript simulator and associated operational files.
When you start the jsSim3600 . exe program, the directory jse becomes the default directory
for script files.

Table of Contents
A.2 Using SciTE with jsSim3600

To execute the editor, first open SciTE.

0

J5E

SciTE displays an editor window. From there, you can run the simulator (section A.2.2).
Table of Contents
A.2.1 Editor Window

The editor displays the window shown in Figure 20, which shows the execution of a script,
user. Js, which purposely includes an error to demonstrate the editor display.

Two keys control execution and error evaluation when the editor window has focus: function
key 4 (F4) and function key 5 (F5).

http://www.scintilla.org/SciTE
http://opensource.ebswift.com/SciTEInstaller/

code CR3600 Simulator

e T[4 steps through detected errors when repeatedly pressed.
e ['5instructs the editor to execute the currently selected script.

For additional controls and features of the editor, see the SciTE user documentation referred
to in section A.1.

In Figure 20 the F'5 key has been pressed to start execution of the script, and the F4 key has
been pressed to highlight the first error. Note the yellow circle at the left of the display that
highlights the currently selected statement in error. Note: SciTE includes an option to display
line numbers (see the SciTE View menu).

“ user.js - SciTE E'E'E'
File Edit Search Mjew Tools Options Language Buffers Help
O = [& & > O Qe
1 user.js |
SO d dd i dddd i ddiad £ ddiddd iy b

A uzer.jz [currently. a copy of crd.j= with minor modifications for experimentation)
Af defoult CR3 application

A zendz/=tores and dizplays decode data: uploadz and ¢lears on request

A pravides link ta confiquration application

AT T T T d i i dddddddidddididd

[khis is a deliberate error to demonstrate how the tools flags it

LT T T T T T T T T8 T T d i i dddddidddid

A constantz

sepHeight = 3;
namePrefix = "cr3-app-";
dataPrefix = namePrefix + "data-"; hhl

=cmd S jsSim user.s

startup script: user.js

storage_readFile; read 7082 bytes

starage_readFile: read 12557 bytes

jse: failed to compile script ‘'user.js'

jse: include: run script failed

user.js:8: SyntaxError: missing ; before staterment:

user.jsig: this is a deliberate error to demonstrate how the tools flags it
user.js:8: ...

li=5 co=1 INS (CR+LF)

Figure 20 — Editor Display

Table of Contents

code CR3600 Simulator

A.2.2 Simulator Window

Figure 21 shows both segments of the CR3600 simulator window. The upper segment,
CR3600 Simulator, simulates the display screen on the CR3600. The lower segment,
Simulated Decode, contains a data entry control into which you can type text to simulate
scanning a bar code (key in or copy and paste data and press enter). It may be necessary to
input characters that cannot be keyed in. To input these characters, use URL encoding (%
followed by the hexadecimal value of the character). For example, <SOH>1234<EQT> would be
encoded as %011234%04. The simulated decode window can be resized, but does not support
multiple line input.

(57 =B e

A

Simulated Decode

Figure 21 — CR3600 Simulator Display
The standard computer keyboard mappings simulate the keypad of the CR3600 as follows:

e F1 simulates the left CR3600 softkey.

e F2 simulates the right CR3600 softkey.

e Backspace simulates the CR3600 clear key.

e Shift Key simulates the CR3600 “SHIFT” key.

e Enter simulates the center black key in the CR3600 cursor pad.

e The arrow, shift, and number keys simulate the corresponding CR3600 keys.

e Alt+F4, or typing “g” twice, closes both segments of the CR3600 Simulator Display. (You
can also close the display by clicking the CR3600 Simulator close (“X”) button.)

For a complete discussion of the CR3600 key pad, see the Code Reader 3600 — User Manual, at
http://www.codecorp.com.

Table of Contents

http://www.codecorp.com/

cnde Input Modes

Appendix B Input Modes

The input mode determines the character set that is active for the CR3600 keypad. The modes
are described in Table 2.

Table 2 — Keypad Input Modes

inputMode | characters
numeric 0123456789
caps A-Z, 0-9 and all ASCII non-alphanumeric symbols:
S % R\
B P L A
R AV R \VE Y
I_Il "II '{II Illl |}'I !
lower a-z, 0-9 and all ASCII non-alphanumeric symbols
symbols All ASCIl and I1SO-8859-1 non-alphanumeric symbols

Table of Contents

cnde Format Specifiers

Appendix C Format Specifiers

The control string of the format function accepts the following codes from the standard C
library:

%d signed decimal integers

%i signed decimal integers

%e lowercase scientific notation

%E uppercase scientific notation

%f floating point decimal

%g uses %e or %f, whichever is shorter
%G uses %E or %f, whichever is shorter
%0 unsigned octal

%s character string

%u unsigned decimal integers

%x lowercase unsigned hexadecimal
%X uppercase unsigned hexadecimal
%% insert a percent sign

Flag, width, and precision modifiers are the same as in the standard C library definition.

Table of Contents

cnde Format Specifiers

Appendix D Supported JavaScript Core

Objects, Methods, and Properties

Array
Boolean
Date
Function
Math
Number
Object
Packages
RegExp
String
sun

Top-Level Properties and Functions

decodeURI
decodeURIComponent
encodeURI
encodeURIComponent
eval

Infinity

isFinite

isNaN

NaN

Number

parseFloat
parselnt

String

undefined

Statements

break
const
continue
do...while
export
for
for...in
function
if...else
import
label
return
switch

code

throw
try...catch
var

while

with

Operators

Assignment Operators
Comparison Operators

Arithmetic Operators

% (Modulus)

++ (Increment)

-— (Decrement)

- (Unary Negation)

Bitwise Operators

Bitwise Logical Operators
Bitwise Shift Operators

Logical Operators
String Operators
Special Operators

?: (Conditional operator)
, (Comma operator)

delete

function

in

instanceof

new

this

typeof

void

Code

D013460 1.1

